Specimen Assessment Materials 2 GCSE Mathematics 2017

Question papers

Unit 1: Non-calculator, Foundation tier Unit 1: Non-calculator, Intermediate tier Unit 1: Non-calculator, Higher tier Unit 2: Calculator-allowed, Foundation tier Unit 2: Calculator-allowed, Intermediate tier Unit 2: Calculator-allowed, Higher tier

Mark schemes

Unit 1: Non-calculator, Foundation tier Unit 1: Non-calculator, Intermediate tier Unit 1: Non-calculator, Higher tier Unit 2: Calculator-allowed, Foundation tier Unit 2: Calculator-allowed, Intermediate tier Unit 2: Calculator-allowed, Higher tier

Assessment grids

Candidate Name	(Centr	e Nu	Indid	date Number				
					0				

GCSE

MATHEMATICS UNIT 1: NON-CALCULATOR FOUNDATION TIER

2nd SPECIMEN PAPER SUMMER 2017

1 HOUR 30 MINUTES

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination.

A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

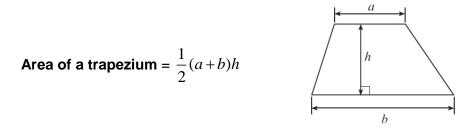
Answer **all** the questions in the spaces provided in this booklet.

Take π as 3.14.

INFORMATION FOR CANDIDATES

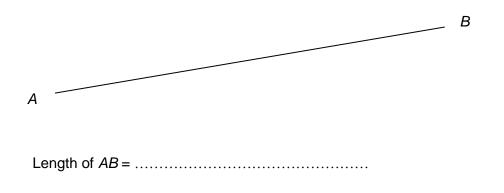
You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.


Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

The assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing in question **8**.


For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	6				
2.	3				
3.	2				
4.	2				
5.	2				
6.	5				
7.	5				
8.	7				
9.	5				
10.	3				
11.	4				
12.	4				
13.	5				
14.	7				
15.	5				
TOTAL	65				

Formula list

1.	<i>(a)</i> Write the number 6 342 000 in words.	[1]
	(b) Write the number fifty-three thousand and six in figures.	[1]
	(c) What is the sum of 647 and 285?	[1]
	(d) Write down the multiple of 8 which lies between 50 and 60.	[1]
	(e) Write down all the factors of 21.	[2]

2. (*a*) Measure and write down the length of the line *AB*. Clearly state the units you are using.

(b) In the space below, draw a circle with diameter 8 cm.

[1]

3. Using each of the numbers 6, 7, 8 and 9 once only, fill in the blanks to make each statement correct. [2]

(a) \times - 5 = 43
(b) 36 ÷ = 11

(a) Jonny travelled from Holyhead to Swansea.
 Circle the answer which shows the best metric unit to measure the distance he has travelled.
 [1]

centimetre	mile	metre	kilometre	millimetre	

(b) Rosie wanted to cook leek soup for St David's Day.She needed to buy 3 kg of leeks for her recipe.Circle the answer which gives the best approximation in pounds (lbs) for that weight of leeks.[1]

	3.3 lb		6.6 lb

 If an has a bag with red and green balls in it. There are 40 red balls and 60 green balls. If an chooses one ball at random from his bag.

On the probability scale below, mark the points A and B where:

A is the probability that Ifan chooses a green ball,

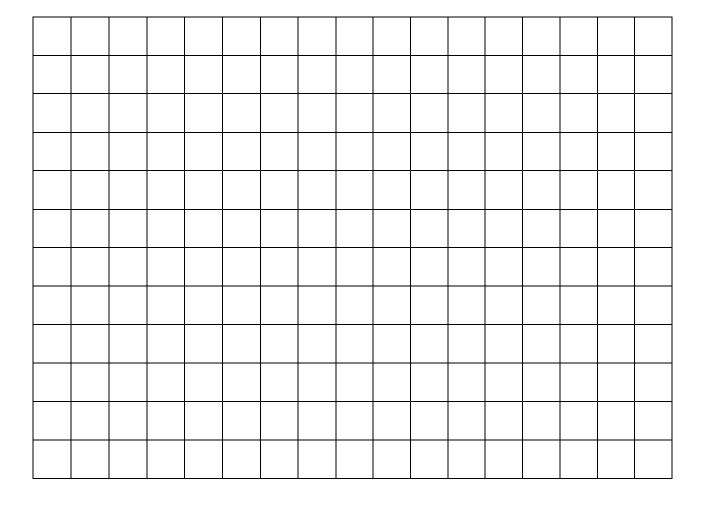
B is the probability that Ifan chooses a yellow ball.

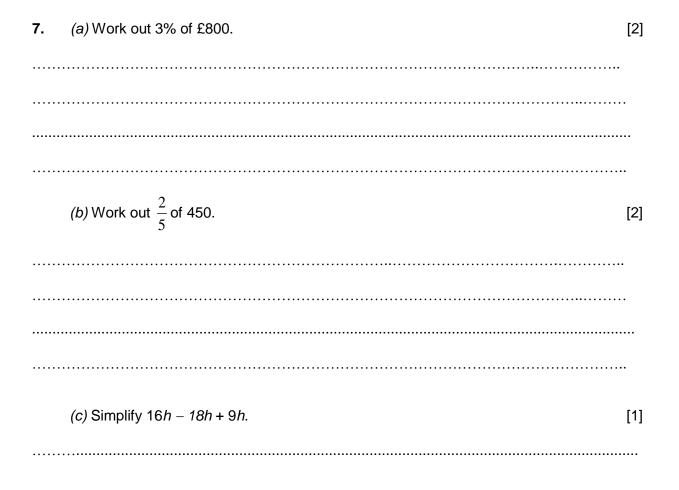
[2]

6. Lucy recorded the number of times some football teams in the Welsh Alliance League won a match during a season. The teams were Bethesda Athletic (B), Caernarfon Town (C), Llanberis (L) and Nefyn United (N).

The data she collected is shown below.

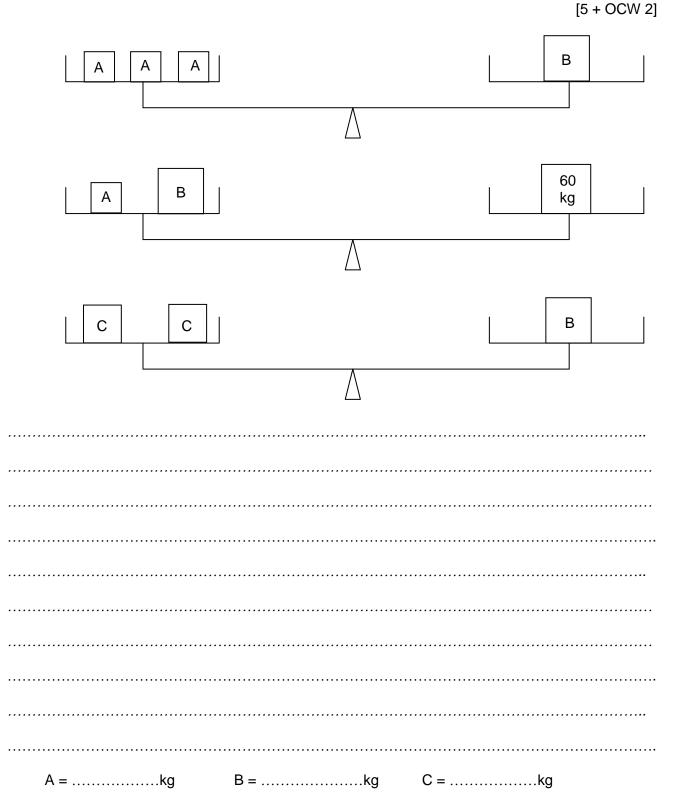
B B N C C C L C N L B C C C C L B B C N N C B


(a) Complete the following table using the above data.


Football team	Tally	Frequency
Bethesda Athletic (B)	THE I	
Caernarfon Town (C)		
Llanberis (L)		
Nefyn United (N)		

(b) Draw a suitable graph to show this data on the grid below.

[3]


[2]

8. You will be assessed on the quality of your organisation, communication and accuracy in writing in this question.

Hussein has a set of scales. He has some weights which are labelled A, B and C. Hussein places different weights on his scales three times so that they balance each time. Find the values of A, B and C.

9. (a) Find the size of angle x.

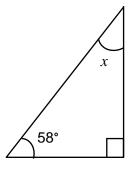


Diagram not drawn to scale

r	_																															o	
л	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		

(b) ABC is an isosceles triangle with AB = AC and $B\hat{A}C = 34^{\circ}$. BCD is a straight line. Find the size of $A\hat{C}D$.

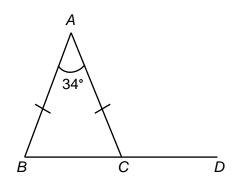


Diagram not drawn to scale

 AĈD =	 • • •

[3]

10. Circle the correct answer for each of the following statements.

(a)	0·2 is equi	valent to				
	2%	20%	0.2%	$\frac{1}{5}\%$	<u>2</u> 10 %	
						[1]
(b)	5.4 – 2.16	is equal to				
	2.24	3.24	3.34	3.36	7.56	
						[1]
	5 1					
(c)	$\frac{5}{6} - \frac{1}{3}$ is even		1	4	0.43	
	<u>51</u> 63	$\frac{4}{3}$	$\frac{1}{2}$	$\frac{4}{6}$		
						[1]

11. Sian states,

'When a fair coin is tossed and a fair dice is thrown,

the probability of getting a head and an even number is $\frac{1}{2}$.

Is Sian correct?

You must show enough working to justify your answer.

[4]

12. (a) A rectangle, *R*, has sides of 5 m and 3 m.

Draw a sketch of a different rectangle that has the same perimeter as rectangle R.
Write down the length of each of the four sides of your rectangle.

[2]

(b) Both the length and width of rectangle R are exactly doubled.
 Does this mean that the area is also exactly doubled?
 You must show enough working to justify your answer.

[2]

13. Solve each of the following equations.

(a)
$$\frac{x}{4} = 8$$
 [1]

(b)
$$\frac{7}{x} = 14$$
 [1]

[3]

(c)
$$9x + 4 = 2x + 39$$

14. (a) The median value of three numbers is 6. The three numbers are *x*, 6 and *y*, in ascending order. Both the range and the mean of these three numbers are also 6.

(b) (i) Find the mode of the following set of numbers, and show that the range, median and mean of the numbers are all the same as the mode.

7	11	6	4	7	[3]
 					 •
 					 -
Rang	je				
Mod	e				
Medi	an				
Mea	n				

(ii) Each of the five numbers is increased by 1.Circle either TRUE or FALSE for each of the following statements.

[2]

The range is increased by 1.	TRUE	FALSE
The mode is increased by 1.	TRUE	FALSE
The median is increased by 1.	TRUE	FALSE
The mean is increased by 1.	TRUE	FALSE

15. A right-angled triangle *ADE* is attached to a trapezium *ABCD* as shown below.

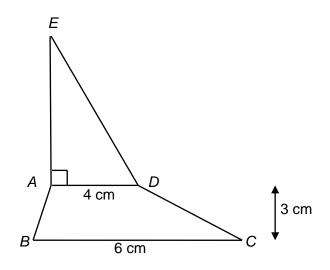


Diagram not drawn to scale

AD = 4 cm, BC = 6 cm, and the perpendicular height of the trapezium is 3 cm.The triangle and the trapezium have equal area.

Calculate the length of *AE*. [5]

END OF PAPER

Candidate Name	(Centr	e Nu	imbe	Candidate Number					
						0				

GCSE

MATHEMATICS UNIT 1: NON-CALCULATOR INTERMEDIATE TIER

2nd SPECIMEN PAPER SUMMER 2017

1 HOUR 45 MINUTES

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided in this booklet.

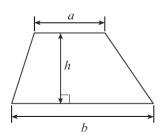
Take π as 3.14.

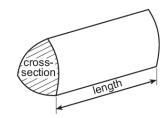
INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.


The number of marks is given in brackets at the end of each question or part-question.


The assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing in question **8**.

For Examiner's use only											
Question	Maximum Mark	Mark Awarded									
1.	5										
2.	3										
3.	4										
4.	4										
5.	4										
6.	5										
7.	7										
8.	7										
9.	6										
10.	7										
11.	3										
12.	6										
13.	3										
14.	4										
15.	6										
16.	6										
TOTAL	80										

Formula list

Volume of a prism = area of cross section × length

1. (a) Find the size of angle x.

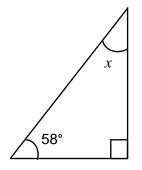


Diagram not drawn to scale

.....

x =°

(b) ABC is an isosceles triangle with AB = AC and $B\hat{A}C = 34^{\circ}$. BCD is a straight line. Find the size of $A\hat{C}D$.

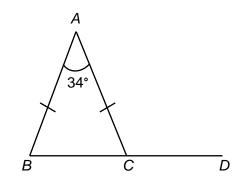


Diagram not drawn to scale

AĈD =°

[3]

2. Circle the correct answer for each of the following statements.

(a)	0⋅2 is equi	valent to				
	2%	20%	0.2%	$\frac{1}{5}\%$	2 10 %	[1]
(b)	5.4 – 2.16	is equal to				
	2.24	3.24	3.34	3.36	7.56	[1]
(C)	$\frac{5}{6} - \frac{1}{3}$ is $\frac{51}{63}$	equal to $\frac{4}{3}$	<u>1</u> 2	<u>4</u> 6	0.43	
						[4]

[1]

[4]

Sian states, 'When a fair coin is tossed and a fair dice is thrown, the probability of getting a head and an even number is $\frac{1}{2}$. Is Sian correct? You must show enough working to justify your answer.

3.

.....

4. (a) A rectangle, *R*, has sides of 5m and 3m.

Draw a sketch of a different rectangle that has the same perimeter as rectangle R. Write down the length of each of the four sides of your rectangle.

(b)	Both the length and width of rectangle R are exactly doubled
	Does this mean that the area is also doubled?
	You must show enough working to justify your answer.

Г	2	1
L	2	1

[4]

 	••••	••••	 	 	 	 	 	 •••							
 	••••	••••	 	 	 	 	 	 •••							
 	••••	••••	 	 	 	 	 	 							
 	••••		 	 	 	 	 	 							

5. Calculate 20% of $\frac{1}{4}$ of 120.

6. Solve each of the following equations.

(a)
$$\frac{x}{4} = 8$$
 [1]

$$(b) \qquad \frac{7}{x} = 14$$
[1]

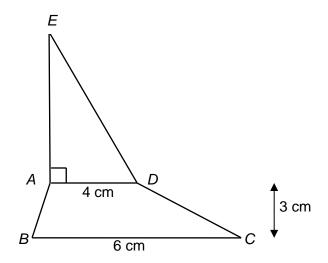
(c)
$$9x + 4 = 2x + 39$$

[3]

7. (a) The median value of three numbers is 6. The three numbers are *x*, 6 and *y*, in ascending order. Both the range and the mean of these three numbers are also 6.

(b) (i) Find the mode of the following set of numbers, and show that the range, median and mean of the numbers are all the same as the mode.

7	11	6	4	7	[3]
Rang	e				
Mode	e				
Medi	an				
Mear	יייי ו				


(ii) Each of the five numbers is increased by 1.Circle either TRUE or FALSE for each of the following statements.

[2]

The range is increased by 1.	TRUE	FALSE
The mode is increased by 1.	TRUE	FALSE
The median is increased by 1.	TRUE	FALSE
The mean is increased by 1.	TRUE	FALSE

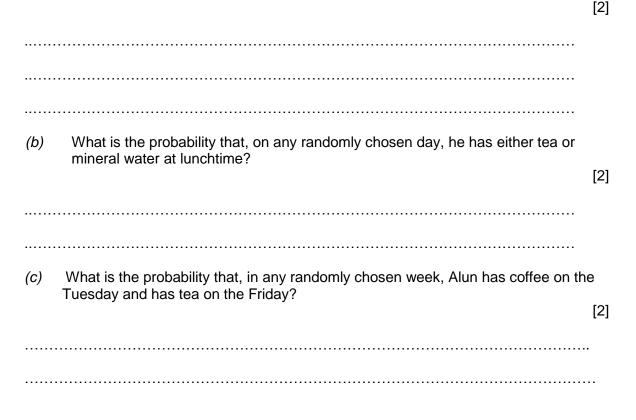
8. You will be assessed on the quality of your organisation, communication and accuracy in writing in this question.

A right-angled triangle ADE is attached to a trapezium ABCD as shown below.

[5 + OCW 2]

Diagram not drawn to scale

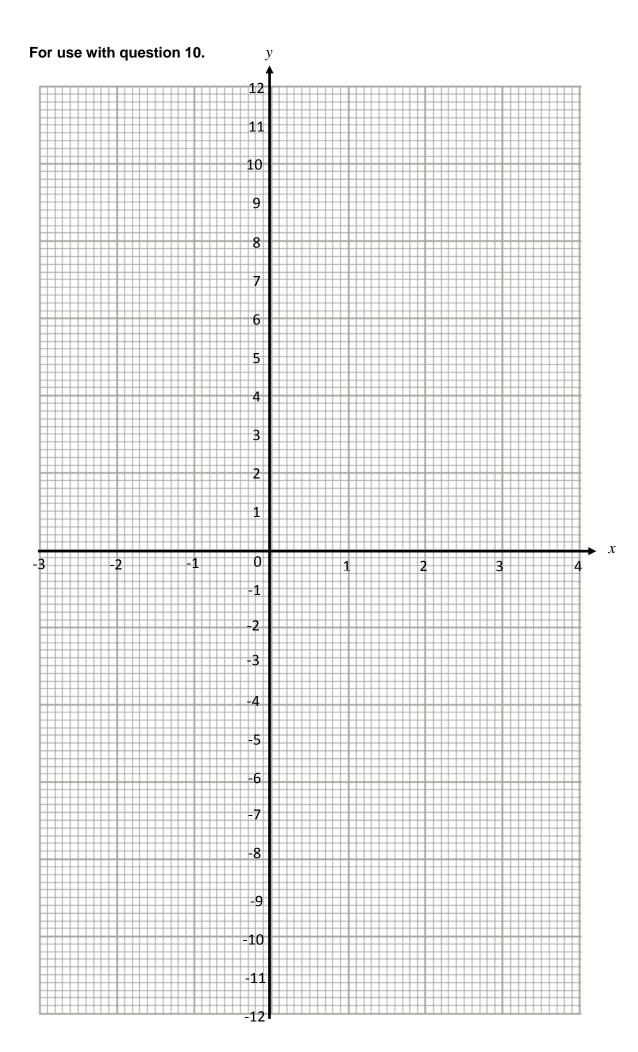
AD = 4 cm, BC = 6 cm, and the perpendicular height of the trapezium is 3 cm. The triangle and the trapezium have equal area.


Calculate the length of AE.

9. At lunchtime on any given day, Alun has one of the following drinks: coffee, tea, mineral water or fruit juice.

His choice of drink each day is independent of his choice of drink on any other day. The table below shows the probabilities for three of his choices of drink on any randomly chosen day.

Drink	Coffee	Tea	Mineral Water	Fruit Juice		
Probability	0.5	0-18	0-27			


(a) Calculate the probability that, on any randomly chosen day, Alun has a fruit juice at lunchtime.

10. (a) The table below shows some of the values of $y = 3x^2 - 4x - 10$ for values of x from -2 to 3.

			g ale va					[1]
	x	-2	-1	0	1	2	3	
	$y = 3x^2 - 4x - 10$	10	-3	-10	- 11		5	
(b)	On the graph paper from –2 to 3.	opposite	e, draw th	ne graph	of $y = 3x^2$	$x^{2} - 4x - 1$	0 for value	es of <i>x</i> [2]
(C)	Using your graph, v Give your answers					0.		[1]
	Values are .			and .				
(d)	Give the coordinate stop decreasing and Write each coordina	d begin t	o increas	e.		h the y-v	alues	[2]
	<i>x</i> =			y =				
(e)	If you needed to dra using the same size							

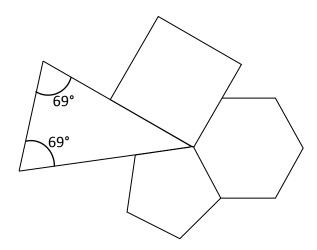
Complete the table by finding the value of y for x = 2.

- **11.** Are the following statements true or false? Circle the correct answer. You must give a **full explanation** of your decision in each case.
 - (a) $a^2 + b^2$ is always an even number when a and b are whole numbers.

true / false

(b)

 a^2b^2 is always an odd number when a and b are odd numbers.

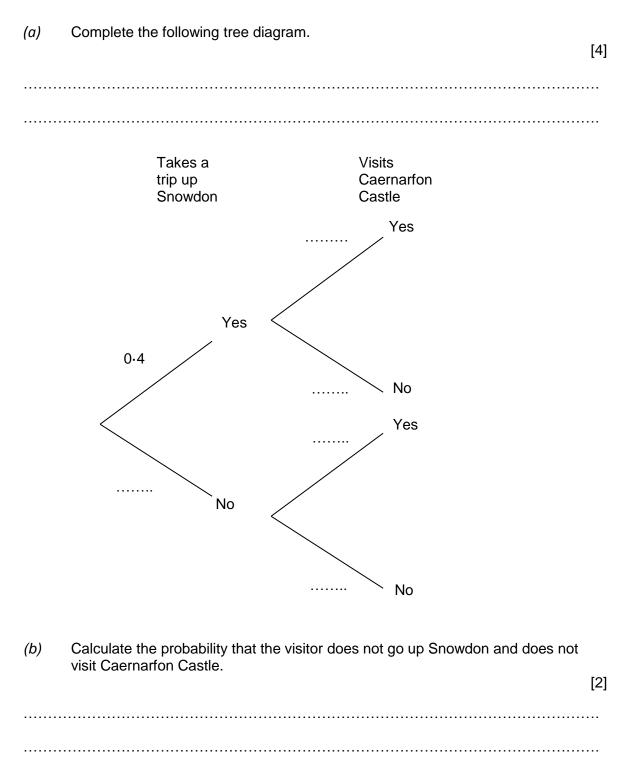

[2]

[1]

true / false

12. Prove that it is possible for a square, a regular pentagon, a regular hexagon and an isosceles triangle with two equal angles of 69° to meet at a point as shown below.

[6]



Circle the correct answer for each of the following statements. 13.

<i>(a)</i> Th	e gradient of the line	2y = 4x + 3 is		
<u>1</u> 2	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	2
				[1]
(b) The	e line $3y = 5x - 6$ cros	sses the y-axis at		
<i>y</i> =-2	$y = -\frac{1}{2}$	<i>y</i> = 2	$y = \frac{5}{3}$	$y = \frac{1}{2}$
				[1]
(c) Th	the line $y = 3x - 2$ has	a point with coordin	ates	
(3 , –2)	(0,2)	(-3 , 2)	(2,3)	(3 , 7)
				[1]
(a) $\frac{2\cdot7\times}{600}$	10 ¹⁰ ,			[2]
<i>(b)</i> (4·5 ×	± 10 ^{−2}) × (3 × 10 ^{−3}).			[2]
		•••••		

14.

For a particular visitor to Gwynedd, taking a trip up Snowdon is independent of visiting Caernarfon Castle.
 The probability that the visitor takes a trip up Snowdon and visits Caernarfon Castle is 0.12.

16.	(a) Solve the	equation	$\frac{8-x}{3} = 5-x.$
-----	---------------	----------	------------------------

(b) Factorise $6a^2 - 8ab$.	
	[2]
(c) Simplify $\frac{(3x-4)^6}{(3x-4)^3}$.	
	[1]

[3]

END OF PAPER

Candidate Name	Centre Number			Candidate Number			ber		
					0				

GCSE

MATHEMATICS UNIT 1: NON-CALCULATOR HIGHER TIER

2nd SPECIMEN PAPER SUMMER 2017

1 HOUR 45 MINUTES

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

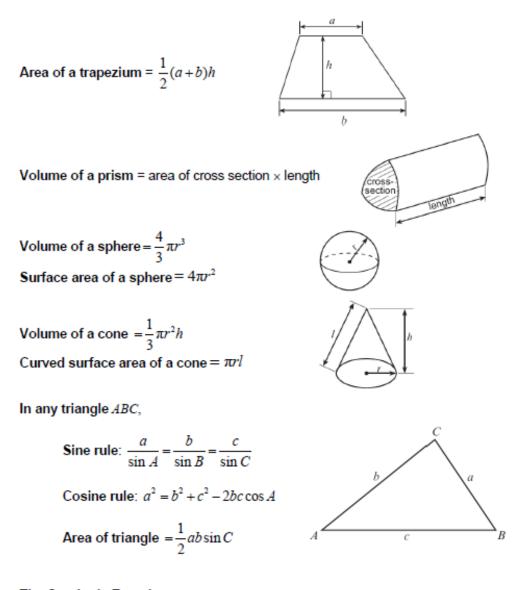
Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided in this booklet.

Take π as 3.14.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.


Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

The assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing in question **4**.

For Examiner's use only							
Question	Maximum Mark	Mark Awarded					
1.	6						
2.	7						
3.	3						
4.	8						
5.	3						
6.	4						
7.	6						
8.	6						
9.	3						
10.	4						
11.	4						
12.	2						
13.	7						
14.	3						
15.	5						
16.	6						
17.	3						
TOTAL	80						

The Quadratic Equation

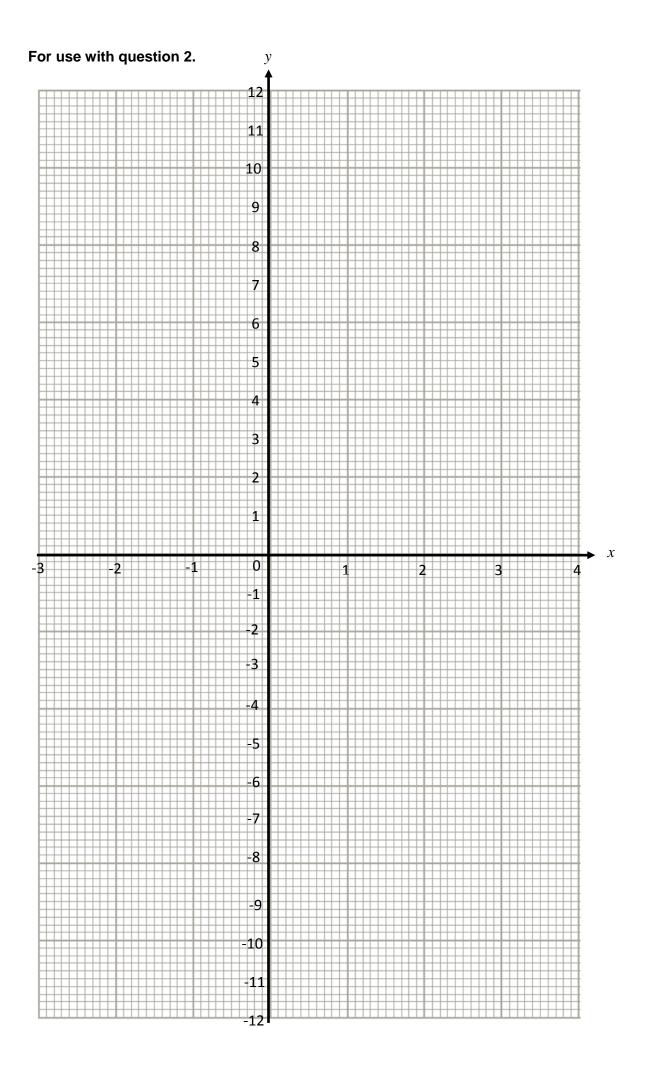
The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^n - 1$, where *i* is the nominal interest rate per annum as a decimal and *n* is the number of compounding periods per annum.

 At lunchtime on any given day, Alun has one of the following drinks: coffee, tea, mineral water or fruit juice. His choice of drink each day is independent of his choice of drink on any other day. The table below shows the probabilities for three of his choices of drink on any randomly chosen day.

Drink	Coffee	Tea	Mineral Water	Fruit Juice
Probability	0.5	0.18	0.27	


(a) Calculate the probability that, on any randomly chosen day, Alun has a fruit juice at lunchtime. [2]

(b)	What is the probability that, on any randomly chosen day, he has either tea or mineral water at lunchtime?	[2]
	What is the probability that, in any randomly chosen week, Alun has coffee on th Tuesday and has tea on the Friday?	ie [2]

2. (a) The table below shows some of the values of $y = 3x^2 - 4x - 10$ for values of x from -2 to 3.

Complete the table by finding the value of y for x = 2.

	·	,	0	2				[1]							
Γ	x	-2	-1	0	1	2	3								
	$y = 3x^2 - 4x - 10$	10	-3	-10	- 11		5								
(b)	On the graph paper	· opposite	e, draw tł	ne graph	of $y = 3x^2$	$x^{2} - 4x - 1$	0 for valu	ues of x							
	from –2 to 3.							[2]							
(c)	Using your graph, v					0.									
	Give your answers	Give your answers correct to 1 decimal place.													
	Values are .			and											
(d)	Give the coordinate stop decreasing an				e at whic	h the y-v	values								
	Write each coordina				ace.			[0]							
								[2]							
	<i>x</i> =			<i>y</i> =											
(e)	If you needed to	draw the	graph of	$y = 3x^2 -$	-4x - 101	for value	s of x fron	∩ –3 to 4							
()	using the same s														
								[']							

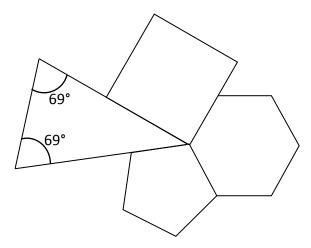
- **3.** Are the following statements true or false? Circle the correct answer. You must give a **full explanation** of your decision in each case.
 - (a) $a^2 + b^2$ is always an even number when a and b are whole numbers.

true / false											

(b) $\frac{2}{2} t^2$ is always an odd number when

 a^2b^2 is always an odd number when a and b are odd numbers.

[2]

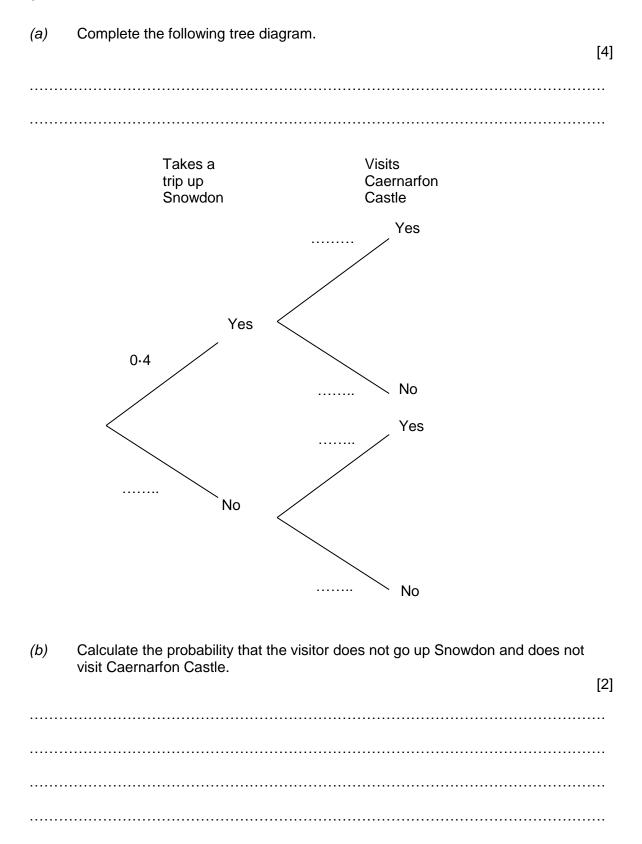

[1]

true / false

4. You will be assessed on the quality of your organisation, communication and accuracy in writing in this question.

Prove that it is possible for a square, a regular pentagon, a regular hexagon and an isosceles triangle with two equal angles of 69° to meet at a point as shown below.

[6 + OCW 2]


5. Circle the correct answer for each of the following statements.

(a)	The gradient of the I	ine $2y = 4x + 3$ is		
$\frac{1}{2}$	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	2
L	2	0		[1]
(b)	The line $3y = 5x - 6$	crosses the y-axis a	at	
y= -2	$y = -\frac{1}{2}$	<i>y</i> = 2	$y = \frac{5}{3}$	$y = \frac{1}{2}$
				[1]
(c)	The line $y = 3x - 21$	nas a point with coo	rdinates	
(3 , -	-2) (0,2)	(-3 , 2)	(2,3)	(3 , 7)
				[1]

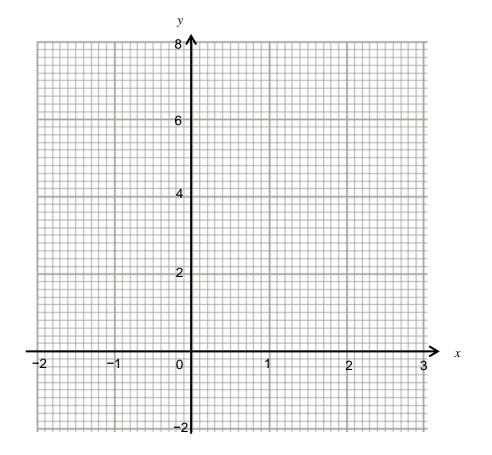
6. Find, in standard form, the value of

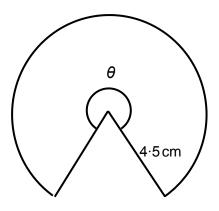
(a)	$\frac{2 \cdot 7 \times 10^{10}}{6000} ,$	[2]
		••
		••
		••
(b)	$(4.5 \times 10^{-2}) \times (3 \times 10^{-3}).$	[2]
		••
		••
		••
		••

For a particular visitor to Gwynedd, taking a trip up Snowdon is independent of visiting Caernarfon Castle.
 The probability that the visitor takes a trip up Snowdon and visits Caernarfon Castle is 0.12.

8.	(a) Solve the equation	$\frac{8-x}{3} = 5-x.$
----	------------------------	------------------------

(b) Factorise $6a^2 - 8ab$.	
	[2]
(c) Simplify $\frac{(3x-4)^6}{(3x-4)^3}$.	[1]


[3]


9. On the graph paper below, draw the region that satisfies all of the following inequalities.

 $x \ge -1$ $x + 2y \le 8$ $y \ge 2x + 1$

Make sure that you clearly indicate the region that represents your answer.

[3]

Diagram not drawn to scale

[4]

The diagram shows a sector of a circle of radius 4.5 cm. The perimeter of the sector is 34 cm. Write an expression for angle θ , in terms of π . Give your answer, in degrees, in its simplest form.

|
 |
|------|------|------|------|------|------|------|
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |

11. A metal bar can be melted down to form 875 solid ornaments of height 6·3 cm. How many similar ornaments of height 31·5 cm could have been formed from the same metal bar?

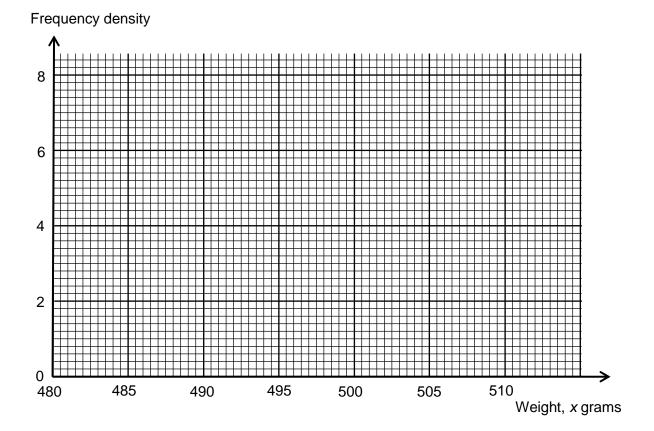
[4]

••••	••••	 ••••	 	 				 	 	 	•••••	 	 	
••••	••••	 ••••	 	 			• • • • • •	 	 	 	•••••	 	 	
••••	••••	 ••••	 	 			• • • • • •	 	 	 	•••••	 	 	
••••	• • • •	 ••••	 	 	•••••		•••••	 	 	 	•••••	 	 	
••••	••••	 ••••	 	 				 	 	 	•••••	 	 	
••••	••••	 ••••	 	 		••••		 	 	 		 	 	
•••••	••••	 •••••	 •••••	 	•••••		•••••	 	 	 		 	 	
•••••	••••	 •••••	 •••••	 	•••••		•••••	 	 	 		 	 	

12.

(a) Which one of the following numbers is rational? Circle your answer.

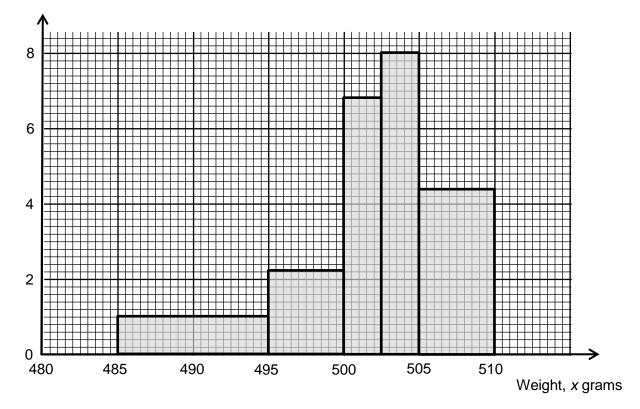
(-)		9			[1]
π	$\sqrt{2}$	∛16	$\sqrt[3]{\frac{125}{8}}$	∜20	
<i>(b)</i> Which	one of the followin	g numbers is irrati	ional? Circle your ans	wer.	[1]
$\left(\frac{3}{8}\right)^2$	$\sqrt{144}$	∛64	0.79125	π^2	


13. A breakfast cereal manufacturer decides to weigh samples of its products.

(a) The table below shows the weight of its samples of "Corn Chip" cereal.

Weight, <i>x</i> grams	Frequency	Frequency density
480 < <i>x</i> ≤ 490	6	
490 <i>< x</i> ≤ 495	22	
495 < <i>x</i> ≤ 497·5	15	
497·5 < <i>x</i> ≤ 500	17	
500 <i>< x</i> ≤ 510	15	

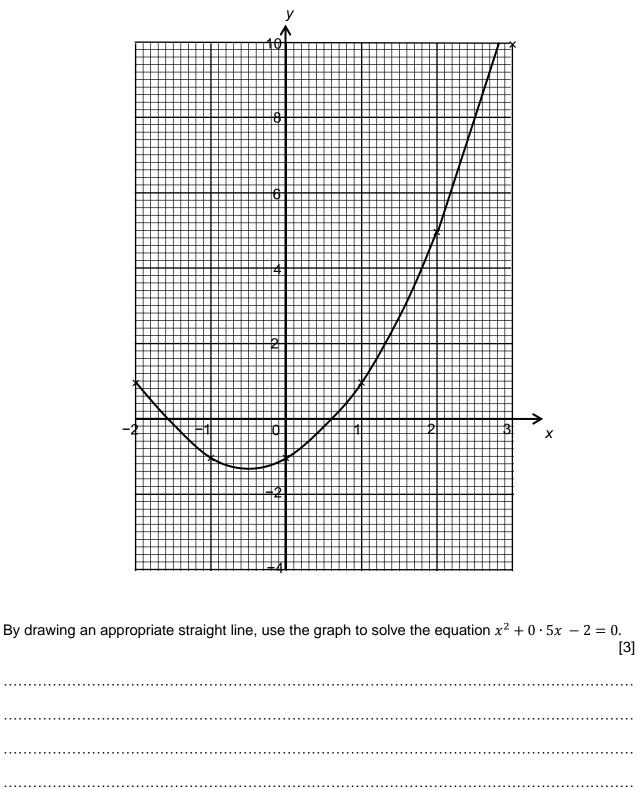
Complete the frequency density column in the table and draw a histogram of this data.



[3]

(b) The histogram for the samples of "Oat Crunch" is shown below.

Frequency density



Use the histogram to estimate the median weight of the "Oat Crunch" samples.

[4]

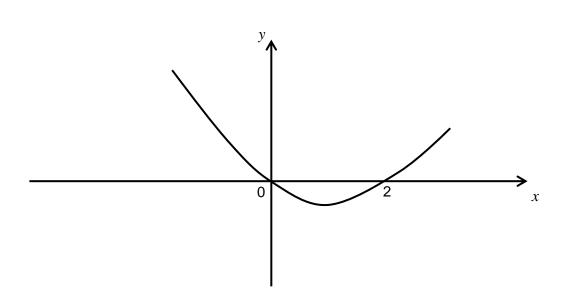
 	 	 	 	•••••	 	 	 	

14. The graph of $y = x^2 + x - 1$ is shown below for values of x from -2 to 3.

15. Simplify $\frac{2x^2 + 13x + 21}{4x^2 - 49}$.	[5]

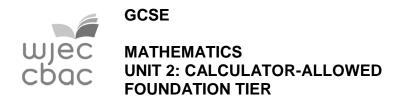
16. In a box of chocolates, there are 10 milk chocolates, 6 dark chocolates and 4 white chocolates.

Two chocolates are chosen at random from the box, without replacement.


(a) Calculate the probability that the chocolates chosen are both white chocolates.

[2]

[4]


(b) Calculate the probability that the chocolates chosen are of different types.

17. The diagram shows a sketch of y = f(x). On the same diagram, sketch the curves y = f(x + 3) and y = -f(x + 3). Clearly label each curve with its function, and indicate the coordinate of any point where a curve crosses an axis. [3]

END OF PAPER

Candidate Name	(Centr	e Nu	ate Number					
					0				

2nd SPECIMEN PAPER SUMMER 2017

1 HOUR 30 MINUTES

ADDITIONAL MATERIALS

A calculator will be required for this paper. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided in this booklet.

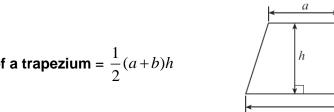
Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

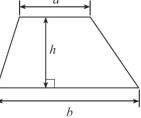
You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.


The number of marks is given in brackets at the end of each question or partquestion.

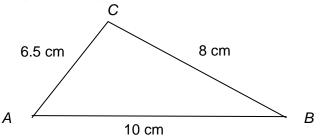
The assessment will take into account the quality of your linguistic and mathematical organisation and communication in question **5**(*c*).


The assessment will take into account the accuracy of your writing (linguistic and mathematical) in question **14**.

For E	xaminer's use	only
Question	Maximum Mark	Mark Awarded
1.	4	
2.	3	
3.	3 2	
4.	3 8	
5.	8	
6.	2	
7.	2	
8.	4	
9.	4	
10.	6	
11.	3 2	
12.		
13.	4	
14.	5	
15.	6	
16.	3	
17.	4	
TOTAL	65	

Formula list

Area of a trapezium =
$$\frac{1}{2}(a+b)i$$

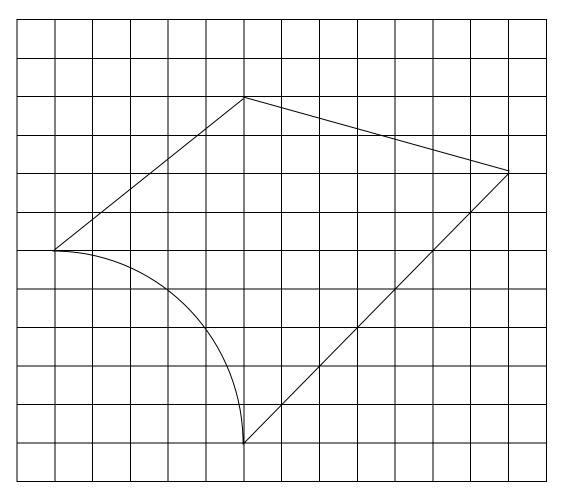


1. Aneurin and Branwen arranged a party after winning their event at the Urdd. Complete the four entries in the following table to show part of their bill for the food they bought.

Amount	Item	Cost
4 bags	Nuts @ £1.35 a bag	£5.40
7	Pizzas @ £1.75 per pizza	
3	Chocolate cakes @ £ per cake	£7.47
cartons	Orange juice @ 99p per carton	£8.91
Total		

[4]

2. Use a ruler and a pair of compasses to make an accurate drawing of this triangle.



The line AB has been drawn for you.

_ B

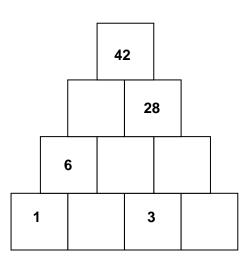
[3]

Α

Estimate the area of the shape drawn above on a square grid if the area of each square is 1 cm $^{2}. \,$

[2]

3.


4. *(a)* Circle the correct word to describe the chance of each of the following events happening.

	Ea Ma	ii has a ch card i choos e chanc	has c es a c	one nu card a	umber t rando	written om from	on it fr n the b	om 1 to ox.		-digit กเ	umber	' is	[1]
	impo	ssible	ι	ınlike	ly	ev	en cha	ance		likely		certain	
	Th Th	afydd ch Iere are Ie chano ssible	16 ye ce tha	ellow	cards i choser	n the b n card is	ox.	w is	ontaini	ng 50 c likely		certain	[1]
<i>(b)</i> W	/rite dc 4	own the 5	mode 4		ese nu 8	ımbers. 4	5	9	3				[1]
						• • • • • • • • •					•••••		

(a) Glyn has made a tower of bricks as shown below.
Each brick has a number on it.
For each pair of bricks that are next to each other in the same row, the number on the brick above them is the total of the numbers on the two bricks.

Glyn has already shown some of the numbers. Fill in all the other numbers on the bricks.

[3]

(b) Hari caught a bus into town.His bus fare was £2.85.He had only £1 coins with him.The bus company's rules state that no change can be given.

In order to avoid losing any money, what coins should Hari make sure he has with him the next time he catches this bus? Give the shortest possible list of coins.

[1]

 (c) You will be assessed on the quality of your organisation and communication in this part of the question.

In a factory which makes 'ready meals', 2205 kg of potatoes are used every day.

There are 9 different types of these meals that are made and each of these uses the same weight of potatoes.

What weight of potatoes is used to make 4 of the types of meals that are made each day?

[3 + OC 1]

6. Solve the following equations.

(a) 17 + x = 35 [1] (b) 8x = 480 [1] 7. On the diagram, mark the point *T* with a cross so that

- $T\hat{A}B = 64^{\circ}$
- AT = 7 cm.

[2]

В

8. (a) Circle either TRUE or FALSE for each statement given below.

STATEMENT		
A cuboid has 6 vertices.	TRUE	FALSE
A tetrahedron is a pyramid with 4 triangular faces only.	TRUE	FALSE
A cube has 12 equal edges.	TRUE	FALSE
A triangular prism has 3 rectangular faces.	TRUE	FALSE

(b) In the space below, draw one shape which has both

rotational symmetry of order 3, and
3 lines of symmetry.

You must draw in the lines of symmetry.

[2]

9.	Here are two sequences of numbers. Some of the numbers have been left out of each sequence. Fill in numbers to make correct sequences. After each sequence, write down the rule used to find the next term in your sequence.														
	<i>(a)</i> 5,, 14,	[2]													
•															
	Rule														
	<i>(b)</i> 40,, 5,	[2]													
•															
	Rule														

10.	(a) Simplify the expression $9g - 5f - 2g + 3f$.	[2]
	(b) Find the value of $3x + 4y$ when $x = -2$ and $y = 4$.	[2]
	(c) Write down the next two numbers in the following sequence.	
	20 14 9 5 2	[2]

- **11.** *(a)* Circle the correct answer for each of the following statements.
 - *(i)* Helen has bought one of the eighty tickets sold in a raffle. The probability that Helen wins the top prize in the raffle is

<u>1</u> 79	1%	1:80	<u>1</u> 80	80%
-				[1]
	selected at random III. The probability t		0	s, 4 red balls and

 $\frac{5}{5} \qquad \frac{1}{2} \qquad \frac{5}{41} \qquad \frac{10}{5} \qquad [1]$

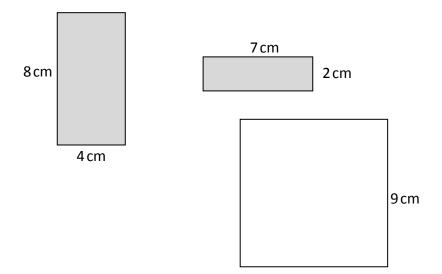
(b) A bag contains some red, green and black beads. One bead is selected at random from the bag.

The probability of selecting a green bead from the bag is $\frac{1}{3}$.

Which of the following sets of beads could have been in the bag? Circle the correct answer.

2 red	3 red	3 red	7 red	5 red
1 green	6 green	3 green	4 green	3 green
1 black	3 black	4 black	1 black	4 black

[1]


12. Calculate 38% of 15.6.

(i)

[2]

 13. The two shaded rectangles shown below are to be drawn on a white, square card of side length 9 cm.

The two rectangles should not overlap.

Diagrams not drawn to scale

Show clearly how this can be done, and calculate the area of the square card that will be unshaded.

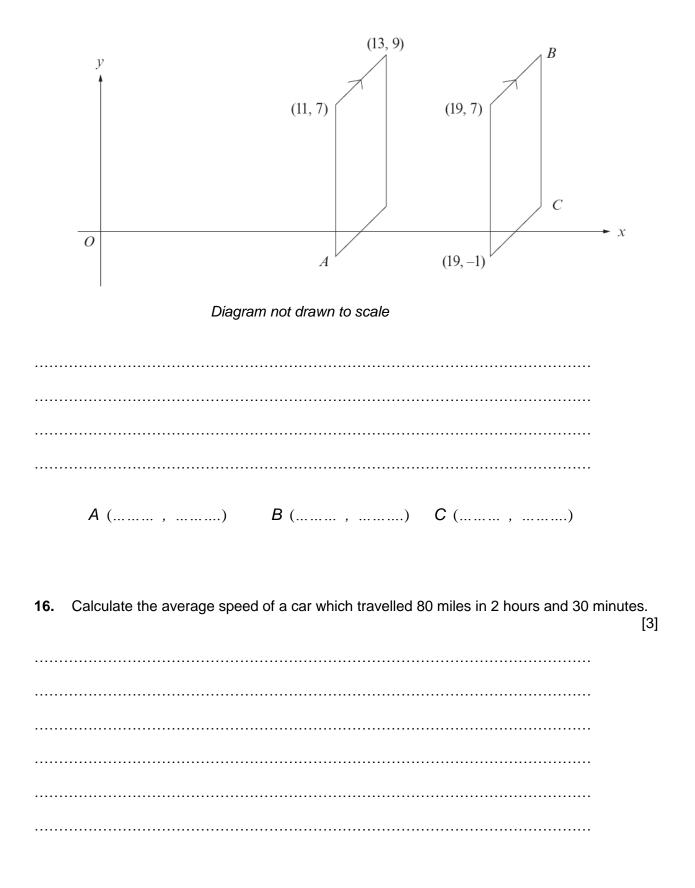
[4]

	•••	 •••	 •••	 	 	 •••	•••	 •••	 • • •		 	 	 •••	 		 	 		 	 	 	
•••	•••	 •••	 •••	 	 	 •••	•••	 •••	 • • •	•••	 	 	 •••	 		 	 	• • •	 	 	 	
	•••	 	 •••	 	 	 •••		 •••	 • • •		 	 	 •••	 		 	 		 	 	 	
	•••	 •••	 •••	 	 	 •••	•••	 •••	 • • •		 	 	 •••	 		 	 		 	 	 	
•••	•••	 	 •••	 	 	 •••		 •••	 	•••	 	 	 •••	 		 	 	• • •	 	 	 	
	•••	 	 •••	 	 	 •••		 •••	 •••		 	 	 	 	• • • •	 	 	• • •	 	 	 	
	•••	 	 •••	 	 	 •••		 •••	 • • •		 	 	 	 		 	 		 	 	 	
	•••	 •••	 •••	 	 	 •••		 •••	 		 	 	 	 		 	 		 	 	 	

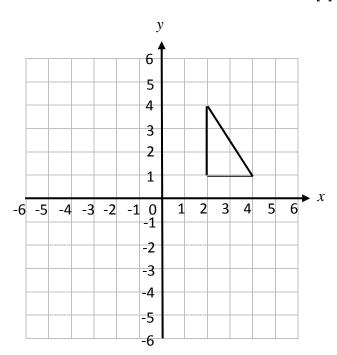
14. You will be assessed on the quality of your accuracy in writing in this question.

The frequency table shows the number of points gained by a football team in each of its matches in the Welsh Premier League.

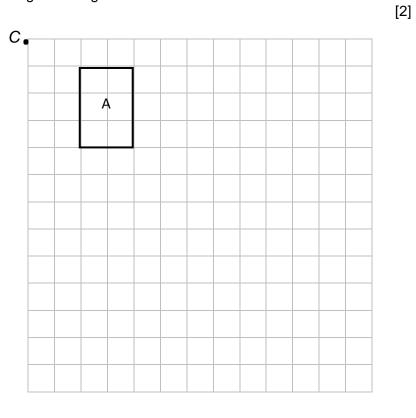
Points scored	Number of matches
0	6
1	5
3	11


Calculate the mean number of points gained per match by this team. Give your answer correct to 2 decimal places.

[4 + W 1]



15. The diagram shows 2 identical parallelograms and the coordinates of four vertices. Find the coordinates of the vertices marked *A*, *B* and *C*.


[6]

17. (*a*) Rotate the triangle 90 ° anticlockwise about the origin.

(b) Enlarge rectangle A using centre C and scale factor 2.

END OF PAPER

[2]

Candidate Name	Centre Number	Candidate Number	
		0	

GCSE

MATHEMATICS UNIT 2: CALCULATOR-ALLOWED INTERMEDIATE TIER

2nd SPECIMEN PAPER SUMMER 2017

1 HOUR 45 MINUTES

ADDITIONAL MATERIALS

A calculator will be required for this paper. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided in this booklet.

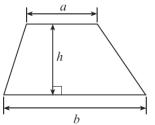
Take π as 3.14 or use the π button on your calculator.

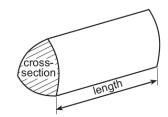
INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.


The number of marks is given in brackets at the end of each question or part-question.


The assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing in question **5**.

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	4		
2.	6		
3.	3		
4.	4		
5.	6		
6.	4		
7.	6		
8.	3		
9.	6		
10.	5		
11.	2		
12.	4		
13.	6		
14.	3		
15.	6		
16.	7		
17.	5		
TOTAL	80		

Formula list

Area of a trapezium =
$$\frac{1}{2}(a+b)h$$

Volume of a prism = area of cross section × length

1. Using only the numbers in the following list,

26 27 28 29 30 31 32	2 33 34
write down	
(a) a factor of 96,	[1]
	[.]
<i>(b)</i> a cube number,	[1]
(c) a multiple of 8.5,	[1]
<i>(d)</i> a prime number.	
(L) L P	[1]

2. (a) Simplify the expression 9g - 5f - 2g + 3f. [2]

(b) Find the value of 3x + 4y when x = -2 and y = 4. [2]

.....

(c) Write down the next two numbers in the following sequence.

20 14 9 5 2 [2]

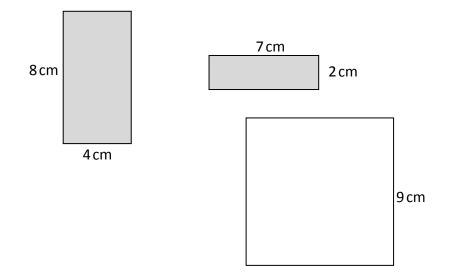
- 3. (a) Circle the correct answer for each of the following statements.
 - (i) Helen has bought one of the eighty tickets sold in a raffle. The probability that Helen wins the top prize in the raffle is

	_1	1%	1:80	1	80%
	79			80	[1]
(ii)	One ball is selected at random form a box containing 5 blue balls, 4 red balls and 1 yellow ball. The probability that the selected ball is blue is				red balls
	$\frac{5}{5}$	$\frac{1}{2}$	<u>5</u> 41	<u>10</u> 5	5%
	0	2		0	[1]

(b) A bag contains some red, green and black beads. One bead is selected at random from the bag.

The probability of selecting a green bead from the bag is $\frac{1}{3}$.

Which of the following sets of beads could have been in the bag? Circle the correct answer.


2 red	3 red	3 red	7 red	5 red
1 green	6 green	3 green	4 green	3 green
1 black	3 black	4 black	1 black	4 black

(a) Calculate 38% of 15.6. [2]
(b) Express 52 as a percentage of 80. [2]

5. You will be assessed on the quality of your organisation, communication and accuracy in writing in this question.

The two shaded rectangles shown below are to be drawn on a white, square card of side length 9 cm.

The two rectangles should not overlap.

Diagrams not drawn to scale

Show clearly how this can be done, and calculate the area of the square card that will be unshaded.

[4 + OCW 2]

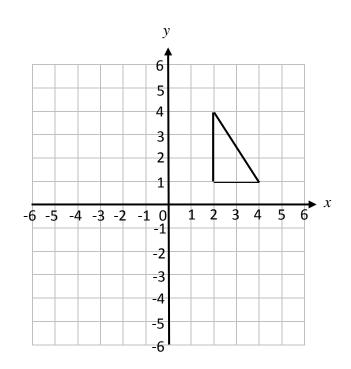
.....

6. The frequency table shows the number of points gained by a football team in each of its matches in the Welsh Premier League.

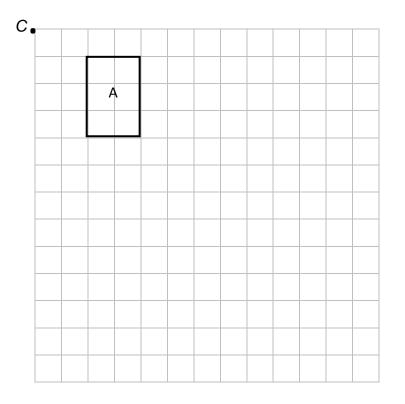
Points scored	Number of matches
0	6
1	5
3	11

Calculate the mean number of points gained per match by this team. Give your answer correct to 2 decimal places.

[4]

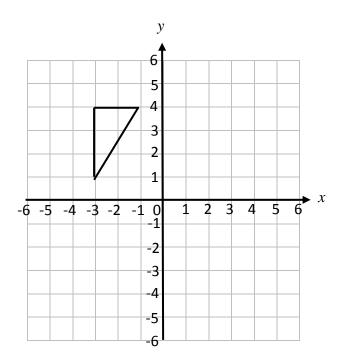


7. The diagram shows 2 identical parallelograms and the coordinates of four vertices. Find the coordinates of the vertices marked *A*, *B* and *C*.


[6]

	0	(13, 9) $(11, 7)$ $(19, 7)$ C A $(19, -1)$
		Diagram not drawn to scale
		A () B () C (
8.	Ca	lculate the average speed of a car which travelled 80 miles in 2 hours and 30 minutes. [3]

9. (a) Rotate the triangle 90 ° anticlockwise about the origin.



(b) Enlarge rectangle A using centre C and scale factor 2.

[2]

(c)(i) Translate the triangle using the column vector $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$.

(ii) Write down the column vector that will **reverse** the translation in part (i).

.....

[1]

[1]

10. Use a ruler and a pair of compasses to construct triangle *ABC* where AC = 10.5 cm, $A\hat{C}B = 60^{\circ}$ and $C\hat{A}B = 45^{\circ}$. Line *AC* has been drawn for you.

[5]

Α

11. Circle either TRUE or FALSE for each statement given below.

[2]

С

STATEMENT		
Circles with diameters of equal length are congruent.	TRUE	FALSE
Regular pentagons whose perimeters are of equal length are congruent.	TRUE	FALSE
Scalene triangles that have the same three angles are congruent.	TRUE	FALSE
Rectangles with equal areas are congruent.	TRUE	FALSE

12. A solution to the equation

$$x^3 - 6x - 4 = 0$$

lies between 2 and 3.

Use the method of trial and improvement to find this solution correct to 1 decimal place.

[4]

You must show all your working.

 A total of 45 councillors make up the Planning, Finance and Education committees of a local council.
 Some of the councillors sit on two of these committees.
 No councillor sits on all three committees.

2 councillors sit on both the Planning Committee and the Education Committee. There are 18 councillors on the Education Committee.

(a) Complete the Venn diagram.

Planning	
6 12 10 Education	
(b) How many councillors sit on both the Planning and Finance committees?	[1]
(c) One of these 45 councillors is chosen at random. What is the probability that this councillor is on the Planning Committee?	[2]

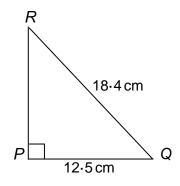


Diagram not drawn to scale

Calculate the length of *PR*, giving your answer correct to 1 decimal place.

		5	0,		·	[3]
•••	 	 	 	 	 	
•••	 	 	 	 	 	
•••	 	 	 	 	 	
•••	 	 	 	 	 	
•••	 	 	 	 	 	

15. A bus company advertises two prices for a return journey between Aberystwyth and Cardiff: an adult price and the price for a child.

A family of 2 adults and 3 children paid a total of £71.50 for their tickets. A group consisting of 3 adults and 4 children paid a total of £101 for their tickets.

Use an algebraic method to calculate the total amount paid by a group of 4 adults and 2 children. [6]

16. (a) Factorise $x^2 - 4x - 21$, and hence solve $x^2 - 4x - 21 = 0$.

(b) Solve the equation
$$\frac{x-7}{4} + \frac{2x+5}{8} = \frac{1}{2}$$
. [4]

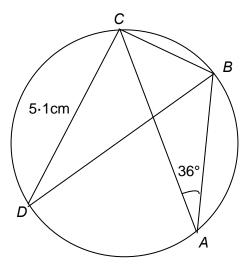


Diagram not drawn to scale

Points A, B, C and D lie on the circumference of a circle. BD is the diameter of the circle, CD = 5.1 cm and $B\hat{A}C = 36^{\circ}$.

[5]

Calculate the length of the chord *BC*. You must give reasons as part of your solution.

Candidate Name	Centre Jumber	Candidate Number			
		0			

GCSE

MATHEMATICS UNIT 2: CALCULATOR-ALLOWED HIGHER TIER

2nd SPECIMEN PAPER SUMMER 2017

1 HOUR 45 MINUTES

ADDITIONAL MATERIALS

A calculator will be required for this paper. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

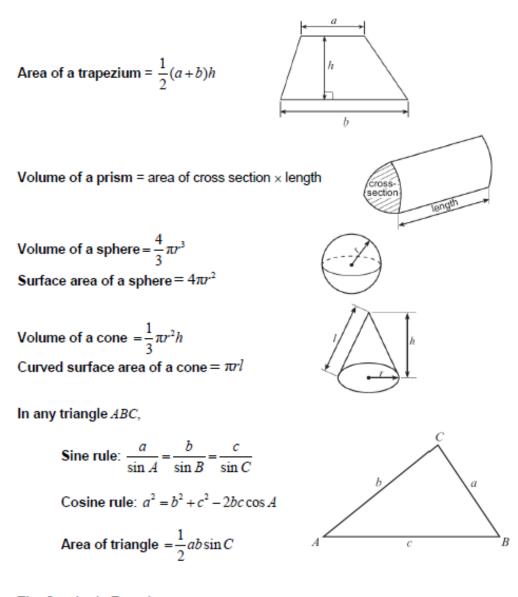
Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided in this booklet.

Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.


Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

The assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing in question **9**.

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	5					
2.	2					
3.	4					
4.	6					
5.	3					
6.	6					
7.	7					
8.	5					
9.	7					
10.	5					
11.	5 3					
12.	7					
13.	6					
14.	7					
15.	7					
TOTAL	80					

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$
 where $a \neq 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^n - 1$, where *i* is the nominal interest rate per annum as a decimal and *n* is the number of compounding periods per annum.

1. Use a ruler and a pair of compasses to construct triangle *ABC* where AC = 10.5 cm, $A\hat{C}B = 60^{\circ}$ and $C\hat{A}B = 45^{\circ}$. Line *AC* has been drawn for you.

[5]

A _____

2. Circle either TRUE or FALSE for each statement given below.

[2]

С

STATEMENT		
Circles with diameters of equal length are congruent.	TRUE	FALSE
Regular pentagons whose perimeters are of equal length are congruent.	TRUE	FALSE
Scalene triangles that have the same three angles are congruent.	TRUE	FALSE
Rectangles with equal areas are congruent.	TRUE	FALSE

3. A solution to the equation

$$x^3 - 6x - 4 = 0$$

lies between 2 and 3.

Use the method of trial and improvement to find this solution correct to 1 decimal place.

[4]

You must show all your working.

A total of 45 councillors make up the Planning, Finance and Education committees of a local council.
 Some of the councillors sit on two of these committees.
 No councillor sits on all three committees.

2 councillors sit on both the Planning Committee and the Education Committee. There are 18 councillors on the Education Committee.

(a) Complete the Venn diagram.

Planning
Finance 6 12 10 Education
<i>(b)</i> How many councillors sit on both the Planning and Finance committees? [1]
(c) One of these 45 councillors is chosen at random.What is the probability that this councillor is on the Planning Committee?[2]

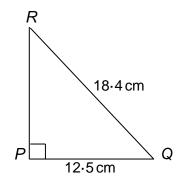


Diagram not drawn to scale

Calculate the length of *PR*, giving your answer correct to 1 decimal place.

6. A bus company advertises two prices for a return journey between Aberystwyth and Cardiff: an adult price and the price for a child.

A family of 2 adults and 3 children paid a total of £71.50 for their tickets. A group consisting of 3 adults and 4 children paid a total of £101 for their tickets.

Use an algebraic method to calculate the total amount paid by a group of 4 adults and 2 children. [6]

7. (a) Factorise $x^2 - 4x - 21$, and hence solve $x^2 - 4x - 21 = 0$.

(b) Solve the equation
$$\frac{x-7}{4} + \frac{2x+5}{8} = \frac{1}{2}$$
. [4]

 	 	 	 	••••

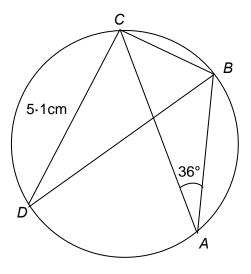


Diagram not drawn to scale

Points *A*, *B*, *C* and *D* lie on the circumference of a circle. *BD* is the diameter of the circle, $CD = 5 \cdot 1$ cm and $B\hat{A}C = 36^{\circ}$.

[5]

Calculate the length of the chord *BC*. You must give reasons as part of your solution.

9. You will be assessed on the quality of your organisation, communication and accuracy in writing in this question.

Gerallt ran the 400 m race in an Urdd sports event. This distance was measured correct to the nearest $0.5 \,\text{m}$.

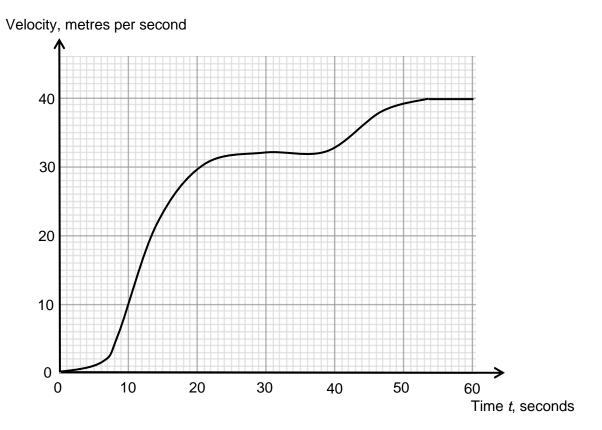
The time it took him was 74 seconds, measured correct to the nearest second.

Calculate Gerallt's least possible average speed **and** greatest possible average speed. Give your answers to 3 significant figures. You must show your working.

[5 + OCW 2]

10. (a) Express $0 \cdot 491$ as a fraction.

..... (b) Is the following statement true or false? Circle the correct answer. You must give a full explanation of your decision. The evaluation of $a^{\frac{2}{3}}$ will always be an integer provided *a* is a multiple of 3. [1] true / false (c) Circle your answer in each of the following. (i) $\sqrt{200}$ simplifies to $20\sqrt{10}$ $100\sqrt{2}$ $10\sqrt{2}$ $2\sqrt{10}$ 20 [1] (ii) $\sqrt{5} + \sqrt{45}$ simplifies to $\sqrt{50}$ $4\sqrt{5}$ $10\sqrt{5}$ $\sqrt{225}$ $4\sqrt{10}$ [1] **11.** The table below shows the number of people employed by a graphic design company.

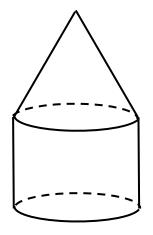

	Male	Female
Full-time	125	30
Part-time	18	87

The company plans to take a stratified sample of 40 members of staff, to find out their views on how the company could be improved.

Calculate the number of staff from each of the four categories that should be in the sample.

[3]

12. The velocity-time graph shows the first 60 seconds of a train's journey from a station.



[4]

(a) Calculate an estimate of the acceleration of the train when t = 20 seconds. State the units of your answer.

(b) Use the trapezium rule with ordinates t = 0, t = 10, t = 20, t = 30, t = 40, t = 50 and t = 60 to calculate an estimate of the distance travelled by the train in the first 60 seconds of its journey.

13. A right-circular cone of vertical height 10 cm and base radius 5 cm is attached to a cylinder of the same radius and height 8 cm.

Diagram not drawn to scale

[6]

Calculate the total surface area of the shape.

14.
(a) Show that the equation
$$\frac{3}{2x-1} - \frac{5}{x+4} = 6$$
 can be written as $12x^2 + 49x - 41 = 0$. [4]
(4)
(5) Hence solve the equation $\frac{3}{2x-1} - \frac{5}{x+4} = 6$.
(6) Hence solve the equation $\frac{3}{2x-1} - \frac{5}{x+4} = 6$.
(7)
(8) Give your answers correct to 2 decimal places. [3]

15. In the parallelogram *ABCD*, AB = 12.7 cm and $D\hat{A}B = 132^{\circ}$.

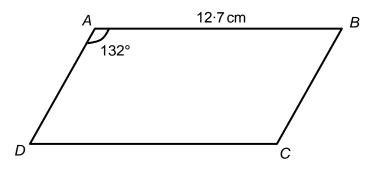


Diagram not drawn to scale

[7]

The area of the parallelogram is 48.5 cm^2 . Calculate the length of the diagonal *DB*.

END OF PAPER

MATHEMATICS 2 nd SAMs 2017	Maria	MARK SCHEME
Unit 1 (Non-calculator) Foundation Tier	Mark	Comments (Page 1)
 1. (a) six million, three hundred and forty-two thousand (b) 53 006 (c) 932 (d) 56 	B1 B1 B1 B1	
(e) 1, 3, 7, 21	B2 6	B1 for 3 or 4 correct factors and no more than 1 wrong factor
2. (a) 10.3 (cm) or 103 (mm)	B1	± 2 mm
Correct units	B1	
(b) Circle drawn with radius 4 cm	B1	± 2 mm
	3	
3. (a) 6 and 8 in either order	B1	
(b) 9 and 7 in that order	B1	
	2	
4. (a) kilometre	2 B1	
(b) 6.6.lb	B1	
5.	2 B1	Allow 6/10 and 0 to represent A and B
B A	B1	respectively.
		A should be between 0.5 and 0.7 exclusive.
		B should be at 0.
(0) (0.6)	2	
6. (a) Bethesda 6	2	B1 for two or three correct frequencies.
Caernarfon 10		If frequencies score 0, then B1 for all 4 correct
Llanberis 3	Do	tallies.
Nefyn 4	B2	
(b) Both axes suitably labelled.	B2	B1 if one square implicitly represents 1 unit (with no scale given); or B1 for correct scale with no 'frequency' label on vertical axis.
Four bars at correct heights.	B1	Bars can be in any order. FT 'their table of frequencies'.
	5	
7. (a) 3/100 × (£) 800	M1	
(£) 24	A1	
(b) 450 ÷ 5 × 2	M1	
180	A1	
	B1	
(c) 7 <i>h</i>	ВТ	
	5	

MATHEMATICS 2 nd SAMs 2017	Mari	MARK SCHEME
Unit 1 (Non-calculator) Foundation Tier	Mark	Comments (Page 2)
8. 3A = B	B1	Seen or implied
4A = 60 (kg)	M1	
(A =) 15 (kg)	A1	
(B =) 45 (kg)	B1	
(C =) 22.5 (kg)	B1	
(0 -) <u>22.0</u> ((g)		
Organisation and communication	OC1	
Accuracy of writing	W1	
	_	
0 (a) x + 59 + 00 - 190 OD x - 00 - 59 - at	7 M1	
9. (a) $x + 58 + 90 = 180 \text{ OR } x = 90 - 58 \text{ or}$ equivalent.	IVII	
$(x =) 32 (^{\circ})$	A1	
(b) $(A\hat{C}B=) 180-34$	M1	
2		
(=) 73 (°)	A1	
(<i>AĈD</i> =) 107(°)	B1	FT 180 – 'their 73' or 34 + 'their 73'.
	5	
10. (a) 20%	B1	
(b) 3.24	B1	
(c) $\frac{1}{2}$	B1	
	3	
11. Attempt at a sample space or equivalent.	S1	Alternative method.
H, even OR H2, H4 and H6 identified. (Probability =) 3/12 or equivalent.	B1 B1	P(H) =1/2 OR P(Ev) =1/2 B1 Use of P(H) × P(Ev) FT S1
Statement that Sian is not correct	B1	Sight of ¼ B1
and / or $3/12 \neq 1/2$		Statement that Sian is not correct
		and / or 1/4 ≠ ½ B1
	4	
12. (a) Sketch of a rectangle with perimeter = $16m$	B2	Allow giving two adjacent sides only.
e.g. 6m by 2m, 7m by 1m,		B1 if units of length not shown.
		B0 for sides of 5m and 3m. Accept a square of 4m by 4m.
(b) Sight of 5×3 OR 10×6	B1	Allow all marks if they use their rectangle from (a).
15(m ²) AND 60(m ²) AND 'No'.	B1	Accept an argument that $2 \times \text{length}$ and $2 \times \text{width}$
		will lead to $4 \times \text{area}$ $(2/ \times 2w = 4/w = 4A)$
	4	
13. (a) $(x =)$ 32	B1	
(b) $(x =) \frac{1}{2}$ or equivalent (e.g. 7/14)	B1	Mark final answer (e.g. $x = 7/14 = 2$ is B0)
(c) $9x - 2x = 39 - 4$	B1	FT until 2 nd error.
7x = 35	B1	
x = 5	B1	
	5	

MATHEMATICS 2 nd SAMs 2017 Unit 1 (Non-calculator) Foundation Tier	Mark	MARK SCHEME Comments (Page 3)
14. (a) $x = 3$ AND $y = 9$	B2	B1 if reversed. If no marks gained allow B1 for $x + y = 12$ or for $y - x = 6$.
(b) (i) Sight of $11 - 4$ AND $35/5$ AND numbers written in order with 7 in the middle AND 7 for each value	В3	B2 for 11 – 4 OR 35/5 OR numbers in order seen AND 7 for each value B1 for unsupported answer of 7 for each value.
(ii) FALSE TRUE TRUE TRUE	B2 7	All four correct. B1 for 3 correct.
15. (Area of <i>ABCD</i> =) $(4+6) \times 3$	M1	
$= 15(cm^{2})$ (Area of <i>ADE</i> =) $\frac{4 \times AE}{2}$	A1 B1	
$\frac{4 \times AE}{2} = 15$	M1	FT 'their derived 15'.
AE = 7.5(cm)	A1	
	5	

MATHEMATICS 2 nd SAMs 2017	Mark	MARK SCHEME
Unit 1 (Non-calculator) Intermediate Tier		Comments (Page 1)
1(a) $x + 58 + 90 = 180 \text{ OR } x = 90 - 58 \text{ or}$ equivalent.	M1	
$(x =) 32(^{\circ})$	A1	
(b) $(A\hat{C}B=) \frac{180-34}{2}$	M1	
= 73(°)	A1	
(<i>AĈD</i> =) 107(°)	B1	FT 180 – 'their 73' or 34 + 'their 73'.
	5	
2(a) 20%	B1	
(b) 3·24	B1	
(C) ¹ / ₂	B1	
	3	
 Attempt at a sample space or equivalent. H, even OR H2, H4 and H6 identified. 	S1 B1	Alternative method. $P(H) = 1/2$ OR $P(Ev) = 1/2$ B1
(Probability =) 3/12 or equivalent.	B1	Use of $P(H) \times P(Ev)$ FT S1
Statement that Sian is not correct	B1	Sight of ¼ B1
and / or 3/12 ≠ 1/2		Statement that Sian is not correct
		and / or 1/4 ≠ 1/2 B1
4(a) Sketch of a rectangle with perimeter = 16m	4 B2	Allow giving two adjacent sides only.
e.g. 6m by 2m, 7m by 1m,	02	B1 if units of length not shown.
		B0 for sides of 5m and 3m.
		Accept a square of 4m by 4m.
(b) Sight of 5×3 OR 10×6	B1	Allow all marks if they use their rectangle from (a).
15(m ²) AND 60(m ²) AND 'No'.	B1	Accept an argument that $2 \times \text{length}$ and $2 \times \text{width}$
	4	will lead to $4 \times \text{area}$ $(2I \times 2w = 4Iw = 4A)$
5. ¼ × 120 OR 0.2 × 120 OR 0.2 × 0.25	4 M1	
= 30 = 24 = 0.05	A1	
0.2×30 $1/4 \times 24$ 120×0.05	M1	FT 'their previous answer'.
= 6 = 6 = 6	A1	An answer of 6% is awarded M1A1M1A0. <i>Alternative solution:</i> 0.2 × 0.25 × 120 M2
		$= 6 \qquad A2$
	4	
6(a) $(x =) 32$	B1	
(b) $(x =) \frac{1}{2}$ or equivalent (e.g. 7/14)	B1	Mark final answer (e.g. $x = 7/14 = 2$ is B0)
(c) $9x - 2x = 39 - 4$	B1	FT until 2 nd error.
7x = 35	B1	
<i>x</i> = 5	B1	
	5	
7(a) $x = 3$ AND $y = 9$	B2	B1 if reversed.
		If no marks gained allow
		B1 for $x + y = 12$ or for $y - x = 6$.
(b)(i) Sight of 11 – 4 AND 35/5 AND numbers	B3	B2 for 11 – 4 OR 35/5 OR numbers in order seen
written in order with 7 in the middle AND 7 for		AND 7 for each value
each value.		B1 for unsupported answer of 7 for each value.
(ii) FALSE	B2	All four correct.
TRUE		B1 for 3 correct.
TRUE		
TRUE	7	
	1	

MATHEMATICS 2 nd SAMs 2017 Unit 1 (Non-calculator) Intermediate Tier	Mark	MARK SCHEME Comments (Page 2)
8. (Area of $ABCD =$) (4+6) × 3	M1	
$2 = 15(cm^{2})$ (Area of ADE =) $\frac{4 \times AE}{2}$	A1 B1	
<u>4 × AE</u> = 15	M1	FT 'their derived 15'.
<i>AE</i> = 7.5(cm)	A1	
Organisation and communication Accuracy of writing	OC1 W1	
	7	A
9. (a) $1 - (0.5 + 0.18 + 0.27) = 0.05$	M1 A1	Accept equivalent answers (percentages or fractions) throughout.
(b) 0.18 + 0.27 = 0.45	M1 A1	
(c) $0.5 \times 0.18 = 0.09$	M1 A1	
	6	
10. (a) - 6	B1	
(b) Six correct plots. Curve drawn	B1 B1	FT 'their (2,-6)'. FT 'their plots'.
(c) Correct values from their graph.	B1	Minimum must be at (a, b) with 0 <a<1 and="" b<-11.<br="">Answers should be -1.3 and 2.6, but readings must from their graph.</a<1>
(d) Correct coordinates from their graph.	B2	B1 for each. Should be (0·67, -11·3), but readings must from their <u>curved</u> graph.
(e) 'The scale on the <i>y</i> -axis'.	B1	Accept unambiguous wording.
	7	
11(a) False AND a counter example given.	E1	
(b) True AND a statement that refers to both '(odd) ² being odd' AND 'odd × odd being odd'.	E2	Accept any equivalent intention to refer to both facts OR a single statement to cover both. E1 for reference to one of the two facts.
	3	
12. Use of <u>(2n – 4)</u> × 90° OR 180° - <u>360°</u> n	M1	Used with $n = 5 \text{ OR } n = 6$.
Pentagon: 108(°) Hexagon: 120(°)	A1 A1	Sight of either 108 or 120 implies M1.
Isosceles triangle: $180 - 2 \times 69 = 42(^{\circ})$	M1 A1	
(Angle sum =) 90(°) + 108(°) + 120(°) + 42(°) = 360(°)	B1	
	6	
13(a) 2	B1	
(b) $y = -2$ (c) (3, 7)	B1 B1	
	3	

Ui	MATHEMATICS 2 nd SAMs 2017 nit 1 (Non-calculator) Intermediate Tier	Mark	MARK SCHEME Comments (Page 3)
14(a).	4.5×10^{6}	B2	B1 for 0.45×10^7 or 4500000 .
(b)	1·35 × 10⁻⁴	B2	B1 for 13⋅5 × 10 ⁻⁵ or (0)⋅000135
		4	
15(a)	$0.4 \times x = 0.12$	M1	
	x = 0.3	A1	
	0.6 on correct branch ('Snowdon – No')	B1	
	0.3, 0.7, 0.3 and 0.7 on correct branches.	B1	FT consistent pairing for 'their 0.3 ' but not for use of 0.6 and 0.4 . B0 if 0.5 used on all four branches.
(b)	0.6×0.7	M1	FT 'their values'.
()	= 0.42	A1	
		6	
16(a)	8 - x = 3(5 - x) or $8 - x = 15 - 3x$	B1	FT until 2 nd error.
	2x = 7	B1	
	$x = 3\frac{1}{2}$ or $7/2$	B1	Mark final answer.
(b)	2a (3a - 4b)	B2	B1 for $2a (3a)$ or $2a (4b)$ B1 for $2 (3a^2 - 4ab)$ or $a (6a - 8b)$
(c)	$(3x-4)^3$	B1	Do not accept with missing brackets.
		6	

	MATHEMATICS 2 nd SAMs 2017 Unit 1 (Non-calculator) Higher Tier	Mark	MARK SCHEME Comments (Page 1)
1.(a)	1 - (0.5 + 0.18 + 0.27) = 0.05	M1 A1	Accept equivalent answers (percentages or fractions) throughout.
(b)	0·18 + 0·27 = 0·45	M1 A1	
(c)	0.5×0.18 = 0.09	M1 A1	
a ()	•	6	
2.(a) (b)	- 6 Six correct plots. Curve drawn.	B1 B1 B1	FT 'their (2,-6)'. FT 'their plots'.
(c)	Correct values from their graph.	B1	Minimum must be at (a, b) with $0 < a < 1$ and $b < -11$. Answers should be $-1 \cdot 3$ and $2 \cdot 6$, but readings must from their graph.
(d)	Correct coordinates from their graph.	B2	B1 for each. Should be (0.67, -11.3), but readings must from their <u>curved</u> graph.
(e)	'The scale on the <i>y</i> -axis'.	B1	Accept unambiguous wording.
		7	
3.(a)	False AND a counter example given.	E1	
(b) '(d	True AND a statement that refers to both odd) ² being odd' AND 'odd × odd being odd'.	E2 3	Accept any equivalent intention to refer to both facts OR a single statement to cover both. E1 for reference to one of the two facts.
4. Use	e of <u>(2n – 4)</u> × 90° OR 180° - <u>360°</u>	M1	Used with n = 5 OR n = 6.
	Pentagon: 108(°) Hexagon: 120(°)	A1 A1	Sight of either 108 or 120 implies M1.
Isosceles triangle: $180 - 2 \times 69$ = $42(^{\circ})$		M1 A1	
(Angle sum =) 90(°) + 108(°) + 120(°) + 42(°) = 360(°)		B1	
Organisation and communication Accuracy of writing		OC1 W1	
		8	
5.(a) (b) (c)	y = -2 (3, 7)	B1 B1 B1	
		3	
6.(a)	4·5 × 10 ⁶	B2	B1 for 0.45×10^7 or 4500000 .
(b)	1.35 × 10 ⁻⁴	B2	B1 for 13⋅5 × 10 ⁻⁵ or (0)⋅000135
		4	

MATHEMATICS 2 nd SAMs 2017 Unit 1 (Non-calculator) Higher Tier	Mark	MARK SCHEME Comments (Page 2)
7.(a) $0.4 \times x = 0.12$ x = 0.3 0.6 on correct branch ('Snowdon – No') 0.3, 0.7, 0.3 and 0.7 on correct branches.	M1 A1 B1 B1	FT consistent pairing for 'their 0·3' but not for use of 0·6 and 0·4. B0 if 0·5 used on all four branches.
(b) 0.6×0.7 = 0.42	M1 A1	FT 'their values'.
	6	
8.(a) $8-x = 3(5-x)$ or $8-x = 15-3x$ 2x = 7 $x = 3\frac{1}{2}$ or $7/2$	B1 B1 B1	FT until 2 nd error. Mark final answer.
(b) 2 <i>a</i> (3 <i>a</i> – 4 <i>b</i>)	B2	B1 for 2 <i>a</i> (3 <i>a</i> –) or 2 <i>a</i> (– 4 <i>b</i>) B1 for 2 (3 <i>a</i> ² – 4 <i>ab</i>) or <i>a</i> (6 <i>a</i> – 8 <i>b</i>)
(c) $(3x-4)^3$	B1	Do not accept with missing brackets.
	6	
9. Any 2 of the lines $x = -1$, $x+2y=8$ and $y = 2x+1$ correct.	B2	B1 for any 1 correct line. If $x = -1$ and $y = -1$ are both shown do not award a mark unless $x = -1$ is selected for the region or clearly labelled.
Correct region shaded.	B1	CAO. Accept indication by 'shading out'.
	3 S1	
10. $\underline{\Theta} \times 2\pi r + 2r$ 360 $\underline{\Theta} \times 2\pi \times 4.5 + 2 \times 4.5 = 34$	B1	
360 Θ = <u>25 × 360</u>	B1	FT for the correct manipulation of their equation
$\Theta = \frac{1000}{\pi}$	B1	with r in two terms, equivalent level of difficulty.
h	4	
11. Sight of the volume scale factor or 5^3 OR 0.2^3 . (Number of ornaments =) 875 ÷ 125 OR 875 × 0.008 .	B2 M1	B1 for sight of 5 OR 0.2.
= 7	A1	
	4	
12. (a) $\sqrt[3]{\frac{125}{8}}$ (b) π^2	B1 B1	
(b) π ²	2	
13. (a) Frequency densities of 0.6 , 4.4 , 6 , 6.8 , 1.5 Histogram of their frequency densities drawn. (b) An attempt to add the areas of the bars. (10 + 11 + 17 + 20 + 22) = 80 Search for the median within the $502.5 - 505$ group e.g. $502.5 + 2/20 \times 2.5$ = 502.75(g)	M2 A1 M1 A1 M1 A1	M1 for any 3 or 4 correct. Provided M1 awarded. CAO. FT 'their 80' provided a clear attempt made to add the areas of the bars.
	7	

MATHEMATICS 2 nd SAMs 2017 Unit 1 (Non-calculator) Higher Tier	Mark	MARK SCHEME Comments (Page 3)
14. Rearranging equation to $x^2 + x - 1 = 0.5x + 1$	M1	
Line $y = 0.5x + 1$ drawn	A1	
Solution of approximately -1.7 AND 1.2.	A1	A solution obtained using the formula gets M0A0A0.
	3	
15. Numerator of $(2x + 7)(x + 3)$	B2	B1 for $(2x7)(x3)$.
Denominator of $(2x+7)(2x-7)$	B2	B1 for $(2x7)(2x7)$.
$\frac{x+3}{2x-7}$	B1	FT provided no more than 1 previous error and
2x - 7		provided simplification required.
	5	
16. (a) 4/20 × 3/19	M1	
= 12/380 (= 3/95)	A1	
(b) Strategy 1 – P(MM) – P(DD) – P(WW) OR equivalent.	S1	For the idea, not notation. Accept missing brackets.
$P(MM) = 10/20 \times 9/19$ or $P(DD) = 6/20 \times 5/19$ or $P(WW) = 4/20 \times 3/19$ or other non-replacement product.	M1	
$1 - \{(10/20 \times 9/19) + (6/20 \times 5/19) + (4/20 \times 3/19)\}$	A1	Or alternative full calculation shown. Allow missing brackets if intention clear.
= 248/380 (= 62/95)	A1	ISW. Ignore incorrect cancelling.
		, , , , , , , , , , , , , , , , , , ,
	6	
17. Horizontal translation to the left with the curve	B1	
crossing the <i>x</i> -axis to the left of zero.		
y=f(x + 3) crossing the x-axis at -3 and -1 .	B1	FT their $y = f(x + 3)$.
Reflection about the <i>x</i> -axis.	B1	
	3	

MATHEMATICS 2 nd SAMs 2017		MARK SCHEME
Unit 2 (Calculator allowed) Foundation Tier	Mark	Comments (Page 1)
1. (£)12.25	B1	
(£) 2.49	B1	
9 (cartons)	B1	
(£) 34.03	B1	
	4	
2.		Allow ± 2 mm
AC = 6.5 cm	M1 M1	
BC = 8 cm Completed triangle	A1	Dependent on at least one M1
		Dependent on at least one M1
	3	
3. Evidence of counting squares	M1	Inside the shape
$46 - 52 (cm^2)$	A1	
	2	
4. (a) (i) likely	2 B1	
(ii) unlikely	B1	
	D 4	
(b) 4	B1	
	3	
5. (a) 42	B3	B3 for 5 correct answers
14 28		B2 for 3 or 4 correct entries on FT
6 8 20		B1 for 2 correct entries on FT
1 5 3 17		
(b) £1, 50p, 20p, 10p, 5p	B1	
(c) (Weight of potatoes for 1 type of meal =)		
2205 ÷ 9	M1	OR 2205 × 4 (= 8820)
(Weight of potatoes for 4 types of meal = 245) $\times 4$	M1	(8820) ÷ 9
980 (kg)	A1	CAO
Organisation and communication	OC1	
	8	
6. (a) $(x =)$ 18 (b) $(x =)$ 60	B1 B1	Accept embedded answers
(b) $(x =) 60$	Ы	
	2	
$7. (T\hat{A}B =) 64^{\circ}$	B1	± 2°
(AT =) 7 cm	B1	± 2 mm
	2	
8. (a) FALSE	B2	B1 for 3 correct
TRUE		
TRUE		
TRUE		
(b) Shape with rotational symmetry of order 3	B1	
Same shape showing 3 correct lines of	B1	
symmetry		
	4	

MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Foundation Tier	Mark	MARK SCHEME Comments (Page 2)
9.		For both (a) and (b), B2 for both spaces filled AND rule given. B1 for either filling the spaces or giving a rule
(a) 5, 8 , 11 , 14 Add 3 to the previous number	B2	(from those on the left).
OR 5, 7.05 , 9.93 , 14, Multiply previous term by $\sqrt[3]{14/5} = 1.67$	(B1) (B1)	
(b) 40, 20 , 10 , 5 Divide previous term by 2	B1 B1	For both entries
OR 40, 28 $\frac{1}{3}$, 16 $\frac{2}{3}$, 5	(B1)	For both entries
Subtract 11 $\frac{2}{3}$ from the previous term	(B1)	
	4	
10. (a) 7 <i>g</i> – 2 <i>f</i>	B2	Must be in an expression for B2. B1 for sight of $7g$ or $-2f$.
(b) 10	B2	B1 for –6 + 16.
(c) 0 and -1	B2	B1 for 0.
	6	
11. (a) (i) <u>1</u> 80	B1	
(ii) <u>1</u> 2	B1	
(b) 7 red 4 green 1 black	B1	
10 0.20 × 15 0 or equivalent	3	
12. 0.38 × 15.6 or equivalent = 5.928 (ISW)	M1 A1	Unsupported 5.9 or 5.92 or 5.93 is M1A0.
12 Upombieusus skateb (i.e. restangles identified)	2 E1	
13. Unambiguous sketch (i.e. rectangles identified) OR Unambiguous description of possible layout.	EI	Allow E1 if intent clear.
Correct use of 'Area = length × width' (Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$ $35(cm^2)$	B1 M1 A1	On any one of the three given shapes.
	4	
14. $(6 \times 0) + 5 \times 1 + 11 \times 3$ ÷ 22	M1 m1	For attempt at $\sum fx$ or sight of 38.
÷ 22 1·73	A2	A1 for 1.72()
Accuracy of writing	W1	
	5	

N	ATHEMATICS 2 nd SAMs 2017	Mark	MARK SCHEME
Unit 2 (Calculator allowed) Foundation Tier		Comments (Page 3)
15.	A (11, -1)	B2	B1 for each ordinate.
	B (21, 9)	B2	B1 for each ordinate.
	C (21, 1)	B2	B1 for each ordinate. FT 'their 21'.
			Accept answers on the diagram.
		6	
16.	Use of 'Speed = Distance ÷ Time'	M1	Allow M1 for 80 / 2(hr) 30(min) or 80 / 2.3
	(Average speed =) <u>80</u>	m1	
	2.5		
	= 32(mph)	A1	CAO
		3	
17.(a)	Correct rotation	B2	B1 for clockwise rotation.
(b)	Correct enlargement with scale factor 2	B2	B1 for correctly sized rectangle in incorrect
	-		position OR consistent use of wrong scale factor
			OR 2 correct vertices
		4	

1. (a)32B1(b)27B1(c)34(d)29 or 31(d)29 or 31(e)342 (a) $7g - 2I$ (b)10(c)0 and -1(d)10(e)0 and -1(f)1(g)10(h)1(h) <th>MATHEMATICS 2nd SAMs 2017 Unit 2 (Calculator allowed) Intermediate Tier</th> <th>Mark</th> <th>MARK SCHEME Comments (Page 1)</th>	MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Intermediate Tier	Mark	MARK SCHEME Comments (Page 1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.(a) 32		
(d)29 or 31B1Still only B1 if both given (with no incorrect value(s)).442.(a) $7g-2f$ B2(b)10B2(c)0 and -1B2B1 for 5ight of $7g or -2f$.B1(c)0 and -1B2(b)10B2(c)0 and -1B2(b)1B1(c)0 and -1B2(b)1B1(c)1B1(c)1B1(d)1B1(e)7 red 4 green 1 blackB1(b)7 red 4 green 1 blackB1(b)52 × 100 80M1(b)52 × 100 80 			
4410 Must be in an expression for B2. B1 for sight of 7g or $-2f$.(b)10B2B1 for sight of 7g or $-2f$.(b)10B2B1 for $-6 + 16$.(c)0 and -1 B2B1 for 0.6663.(a)(i) $\frac{1}{2}$ B1(b)7 red 4 green 1 blackB1(b)7 red 4 green 1 blackB1(b)7 red 4 green 1 blackB1(b)52 × 100 80M1 = 65(%)M1 A1(b)52 × 100 80M1 = 65(%)M1 A1(b)52 × 100 80 = 65(%)M1 A1Unsupported 5.9 or 5.92 or 5.93 is M1A0.(b)52 × 100 80 = 65(%)M1 A1M1 M1 M1 M1(b)52 × 100 80 = 35(cm²)M1 A1(Uncovered area =) 9 × 9 - 8 × 4 - 7 × 2 = 35(cm²)A1 M1 A1Organisation and communication Accuracy of writingOC1 4 66.(6 × 0) + 5 × 1 + 11 × 3 $\div 22$ = 1.736 A17.A (11, -1) B (21, 9) C (21, 1)B2 B2 B1 for each ordinate. B1 for each ordinate. <td></td> <td>B1</td> <td>Still only B1 if both given (with no incorrect</td>		B1	Still only B1 if both given (with no incorrect
2.(a) $7g - 2f$ B2 Must be in an expression for B2. B1 for sight of $7g$ or $-2f$. B1 for sight of $7g$ or $-2f$. B1 for sight of $7g$ or $-2f$. B1 for $-6 + 16$. B2 (b) 10 6 3.(a) (f) 1 6 (ii) 1 80 (iii) 1 81 (b) 7 red 4 green 1 black B1 4.(a) 0.38 × 15-6 or equivalent = 5.928 (1SW) M1 (b) 52×100 80 M1 6 A1 4 7. Correct use of 'Area = length × with' (Uncovered area =) 9 × 9 - 8 × 4 · d7 × 2 = 35(cm ³) B1 0°rganisation and communication Accuracy of writing 6 6. (6 × 0) + 5 × 1 + 11 × 3 = 1.73 M1 $\div 22$ = 1.73 7. A (11, -1) B (21, 9) C (21, 1) B2 B 1 for each ordinate. B (21, 9) C (21, 1) 8 10 B1 for each ordinate. B 1 for each ordina			value(s)).
B1 for sight of $7g$ or $-2t$. (b) 10 (c) 0 and -1 B2 B1 for $-6 + 16$. (c) 0 and -1 B2 B1 for $-6 + 16$. B2 B1 for 0 . (i) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{7}{12}$ (c) $\frac{7}{12$	2(a) $7a$ $2b$		Must be in an every receipt for D2
(c)0 and -1B2B1 for 0.3.(a) (i)16(ii)180(iii)181(b)7 red 4 green 1 blackB1(c)	2.(a) $7g - 2f$	BZ	
3.(a) (i) $\frac{1}{80}$ $B1$ (ii) $\frac{1}{2}$ $B1$ (b)7 red 4 green 1 black $B1$ 4.(a)0.38 x 15.6 or equivalent = 5.928 (ISW) $M1$ A1(b) $\frac{52}{22} \times 100$ 80 $M1$ = 65(%) $M1$ A1(b) $\frac{52}{22} \times 100$ 80 $M1$ = 65(%) $M1$ A1(b) $\frac{52}{22} \times 100$ 80 $M1$ = 65(%) $A1$ Correct use of 'Area = length × width' (Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$ = $35(cm')$ $B1$ M1 A1Organisation and communication Accuracy of writing $OC1$ W1 6 $(6 \times 0) + 5 \times 1 + 11 \times 3$ ± 22 C (21, 1) $B1$ ± 22 B1 for each ordinate. B1 for eac	(b) 10	B2	B1 for –6 + 16.
3.(a) (i) $\frac{1}{80}$ B1(ii) $\frac{1}{2}$ B1(b)7 red 4 green 1 blackB1 adgreen 1 black4.(a)0-38 × 15-6 or equivalent = 5-928 (ISW)M1 A1(b) $\frac{52}{22} \times 100$ 80M1 = 65(%)M1 A1(b) $\frac{52}{80} \times 15-6$ or equivalent = 65(%)M1 A1(b) $\frac{52}{80} \times 15-6$ or equivalent = 65(%)M1 A1(b) $\frac{52}{80} \times 15-6$ A1Correct use of 'Area = length × width' = 35(cm ²)B1 A1Organisation and communication Accuracy of writingOC1 W1 = 1-7366.(6 × 0) + 5 × 1 + 11 × 3 ± 22 C (21, 1)M1 ± 22 = 1-737.A (11, -1) B (21, 9) C (21, 1)B2 B1 for each ordinate. B1 f	(c) 0 and -1	B2	B1 for 0.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
(i) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c)	3.(a) (i) $\frac{1}{80}$	B1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		B1	
3 $4.(a)$ 0.38×15.6 or equivalent $= 5.928$ (ISW)M1 A1Unsupported 5.9 or 5.92 or 5.93 is M1A0.(b) 52×100 80 M1 $= 65(\%)$ M1 A1 $c)$ a A1 a 4 $5.$ Unambiguous sketch (i.e. rectangles identified) Unambiguous description of possible layout. (Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$ $= 35(cm^2)$ B1 M1 A1Organisation and communication Accuracy of writingOC1 1 On any one of the three given shapes. 6 $6.$ $(6 \times 0) + 5 \times 1 + 11 \times 3$ ± 22 $= 1.73$ M1 A1 $7.$ $A (11, -1)$ $B (21, 9)$ $C (21, 1)$ B2 $B1$ for each ordinate. B1 for each	4 green	B1	
4.(a) 0.38×15.6 or equivalent $= 5.928$ (ISW)M1 A1Unsupported 5.9 or 5.92 or 5.93 is M1A0.(b) 52×100 80 M1 $= 65(\%)$ M1 A15.Unambiguous sketch (i.e. rectangles identified) OR Unambiguous description of possible layout. Correct use of 'Area = length × width' (Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$ $= 35(cm^2)$ B1 M1 A1Allow E1 if intent clear. May be penalised on OCW if poorly expressed.Organisation and communication Accuracy of writingOC1 W1 $= 1.73$ On any one of the three given shapes.66(6 \times 0) + 5 \times 1 + 11 \times 3 ± 22 $= 1.73$ M1 $= 1.73$ 7.A (11, -1) B (21, 9) C (21, 1)B2 C (21, 1)B1 for each ordinate. B1 for ea	I DIACK	3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.(a) 0.38×15.6 or equivalent		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Unsupported 5.9 or 5.92 or 5.93 is M1A0.
445. Unambiguous sketch (i.e. rectangles identified) OR Unambiguous description of possible layout.E1 Allow E1 if intent clear. May be penalised on OCW if poorly expressed.Correct use of 'Area = length × width' (Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$ $= 35(cm^2)$ B1 M1 A1Organisation and communication Accuracy of writingOC1 W1666. (6 \times 0) + 5 \times 1 + 11 \times 3 \pm 22 $=$ 1·73M1 A27. A (11, -1) B (21, 9) C (21, 1)B2 B1 for each ordinate. B1 for each ordinate	(b) $\frac{52}{80} \times 100$	M1	
5.Unambiguous sketch (i.e. rectangles identified) OR Unambiguous description of possible layout.E1 Allow E1 if intent clear. May be penalised on OCW if poorly expressed.Correct use of 'Area = length × width' (Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$ $= 35(cm^2)$ B1 M1 A1On any one of the three given shapes.Organisation and communication Accuracy of writingOC1 W1OC1 W1666. $(6 \times 0) + 5 \times 1 + 11 \times 3$ ± 22 $= 1\cdot73$ M1 A27.A (11, -1) B (21, 9) C (21, 1)B2 B28.Use of 'Speed = Distance + Time' (Average speed =) $2\cdot5$ $= 32(mph)$ M1 A16.Variable of 'Speed = Distance + Time' $2\cdot5$ $= 32(mph)$ M1 A16.CADChr 30(min) or 80 / 2·3	= 65(%)	A1	
OR Unambiguous description of possible layout.if poorly expressed.Correct use of 'Area = length × width' (Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$ = $35(cm^2)$ B1 M1 A1Organisation and communication Accuracy of writingOC1 W1666. $(6 \times 0) + 5 \times 1 + 11 \times 3$ ± 22 = 1.73 M1 M1 A27.A (11, -1) B (21, 9) C (21, 1)B2 B1 for each ordinate. B1 for each ordi			
$\begin{array}{c} \text{Correct use of 'Area = length \times width'}\\ (Uncovered area =) 9 \times 9 - 8 \times 4 - 7 \times 2\\ = 35(\text{cm}^2) \end{array} \begin{array}{c} \text{B1}\\ \text{M1}\\ \text{A1} \end{array} \end{array} \qquad \begin{array}{c} \text{On any one of the three given shapes.} \end{array}$	OR	E1	
$\begin{array}{c c} (\text{Uncovered area =}) 9 \times 9 - 8 \times 4 - 7 \times 2 \\ = 35(\text{cm}^2) & \text{A1} \\ \hline \text{A1} \\ \text{Organisation and communication} \\ \text{Accuracy of writing} & \begin{array}{c} \text{OC1} \\ \text{W1} \\ \hline \\ & & \\ \hline \\ \\ \hline \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ & & \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ & & \\ \hline \\ \hline$	Unambiguous description of possible layout.		
$\begin{array}{c c} (\text{Uncovered area =}) 9 \times 9 - 8 \times 4 - 7 \times 2 \\ = 35(\text{cm}^2) & \text{A1} \\ \hline \text{A1} \\ \text{Organisation and communication} \\ \text{Accuracy of writing} & \begin{array}{c} \text{OC1} \\ \text{W1} \\ \hline \\ & & \\ \hline \\ \\ \hline \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ & & \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ & & \\ \hline \\ \hline$	Correct use of 'Area = length × width'	B1	On any one of the three given shapes.
Organisation and communication Accuracy of writingOC1 W1666. $(6 \times 0) + 5 \times 1 + 11 \times 3$ $\div 22$ $= 1.73$ M1 M1 A2For attempt at $\sum fx.$ or sight of 38. $A1$ for $1.72()$ 7. $A(11, -1)$ $B(21, 9)$ $C(21, 1)$ B2 B2 B2 B2 C(21, 1)B1 for each ordinate. B1 for each ordinate. B1 for each ordinate. FT 'their 21'. Accept answers on the diagram.8. Use of 'Speed = Distance + Time' $(Average speed =)$ 2.5 $= 32(mph)$ M1 A1Allow M1 for 80 / 2(hr) 30(min) or 80 / 2.3	(Uncovered area =) $9 \times 9 - 8 \times 4 - 7 \times 2$	M1	, , , , , , , , , , , , , , , , , , , ,
Accuracy of writingW166. $(6 \times 0) + 5 \times 1 + 11 \times 3$ M1 $\div 22$ $= 1.73$ For attempt at $\sum fx.$ or sight of 38. 3×22 $= 1.73$ M1 A2For attempt at $\sum fx.$ or sight of 38.7. A (11, -1)B2 B (21, 9) C (21, 1)B1 for each ordinate. B2 B1 for each ordinate. B1 for each ordinate. B2 B1 for each ordinate. C408. Use of 'Speed = Distance \div Time' (Average speed =) $\frac{80}{2.5}$ $= 32(mph)$ M1 A1Allow M1 for 80 / 2(hr) 30(min) or 80 / 2.3	$= 35(cm^2)$	A1	
Accuracy of writingW166. $(6 \times 0) + 5 \times 1 + 11 \times 3$ M1 $\div 22$ $= 1.73$ For attempt at $\sum fx.$ or sight of 38. 3×22 $= 1.73$ M1 A2For attempt at $\sum fx.$ or sight of 38.7. A (11, -1)B2 B (21, 9) C (21, 1)B1 for each ordinate. B2 B1 for each ordinate. B1 for each ordinate. B2 B1 for each ordinate. C408. Use of 'Speed = Distance \div Time' (Average speed =) $\frac{80}{2.5}$ $= 32(mph)$ M1 A1Allow M1 for 80 / 2(hr) 30(min) or 80 / 2.3	Organization and communication	001	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
6. $(6 \times 0) + 5 \times 1 + 11 \times 3$ $\div 22$ $= 1.73$ M1 m1 A2For attempt at $\sum fx.$ or sight of 38. $3.$ $\div 22$ $= 1.73$ $m1$ A2A1 for $1.72()$ 7.A (11, -1) B (21, 9) C (21, 1)B2 B2 B2B1 for each ordinate. B1 for each ordinate. B2 B1 for each ordinate. FT 'their 21'. Accept answers on the diagram. 68.Use of 'Speed = Distance \div Time' (Average speed =) $\frac{80}{2\cdot 5}$ $= 32(mph)$ M1 A1Allow M1 for 80 / 2(hr) 30(min) or 80 / 2·3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$6 - (6 \times 0) + 5 \times 1 + 11 \times 2$		For attempt at Σf_{Y} or eight of 29
$= 1.73$ $A2$ $A1 \text{ for } 1.72()$ 4 $7.$ $A (11, -1)$ $B (21, 9)$ $C (21, 1)$ $B (21, 9)$ $C (21, 1)$ $B2$ $B1 \text{ for each ordinate.}$ $B2$ $B1 \text{ for each ordinate.}$ $B2$ $B1 \text{ for each ordinate.} FT 'their 21'.$ $Accept \text{ answers on the diagram.}$ 6 $8.$ $Use \text{ of 'Speed = Distance ÷ Time'}$ $(Average speed =) \frac{80}{2.5}$ $= 32(mph)$ $A1$ CAO			For all empt at $\sum x$. of signt of so.
7.A (11, -1) B (21, 9) C (21, 1)B2 B (21, 9) C (21, 1)B2 B2 B2 B2B1 for each ordinate. B1 for each ordinate. FT 'their 21'. Accept answers on the diagram. 68.Use of 'Speed = Distance ÷ Time' (Average speed =) $\frac{80}{2\cdot5}$ = 32(mph)M1 A1Allow M1 for 80 / 2(hr) 30(min) or 80 / 2·3			A1 for 1.72()
B (21, 9) C (21, 1)B2 B2B1 for each ordinate. B1 for each ordinate. FT 'their 21'. Accept answers on the diagram.8.Use of 'Speed = Distance \div Time' (Average speed =) $\frac{80}{2\cdot5}$ = 32(mph)M1 A1Allow M1 for 80 / 2(hr) 30(min) or 80 / 2·3			
C (21, 1)B2B1 for each ordinate. FT 'their 21'. Accept answers on the diagram.8.Use of 'Speed = Distance \div Time'M1 $2\cdot5$ $= 32(mph)$ Allow M1 for 80 / 2(hr) 30(min) or 80 / 2·3			
6 Accept answers on the diagram.8.Use of 'Speed = Distance ÷ Time'M1 $2\cdot5$ Allow M1 for 80 / 2(hr) 30(min) or 80 / 2·3 $2\cdot5$ m1 $2\cdot5$ A1CAO			
8.Use of 'Speed = Distance \div Time'M1Allow M1 for 80 / 2(hr) 30(min) or 80 / 2.3(Average speed =) $\frac{80}{2.5}$ m1= 32(mph)A1CAO			
$\begin{array}{c c} (\text{Average speed =}) & \underline{80} & m1 \\ 2 \cdot 5 & \\ &= 32(\text{mph}) & \text{A1} & \text{CAO} \end{array}$			
= 32(mph) A1 CAO	(Average speed =) 80		Allow M1 for 80 / 2(hr) 30(min) or 80 / 2·3
		Δ1	CAO
	= 52(11p11)	3	

	MATICS 2 nd SAMs 2017 ator allowed) Intermediate Tier	Mark	MARK SCHEME Comments (Page 2)
9.(a) Correct		B2	B1 for clockwise rotation.
(b) Correct	enlargement with scale factor 2	B2	B1 for correctly sized rectangle in incorrect position OR consistent use of wrong scale factor OR 2 correct vertices
(c) (i) Correc		B1	
(ii) $\begin{pmatrix} -5\\2 \end{pmatrix}$		B1	
		6	
10. Corre	ct construction of 60°.	B2	With sight of accurate 'method arcs'. B1 for sight of 'method arcs' but not drawn accurately.
Corre	ect construction of 90°.	B2	With sight of accurate 'method arcs'. B1 for sight of 'method arcs' but not drawn accurately.
Corr	ect bisector of 90°.	B1	With sight of accurate 'method arcs'. FT 'their 90°' Penalise –1 if angles drawn at incorrect positions or if triangle not completed.
		5	or in thangle not completed.
11.	TRUE TRUE	B2	B1 for 3 correct.
	FALSE FALSE	2	
12.			Correct evaluation regarded as enough to identify it negative or positive. If evaluations not seen accept 'too high' or 'too low'.
	evaluation $2 \le x \le 3$ ons $2 \cdot 65 \le x \le 2 \cdot 85$, one < 0, one > 0.	B1 B1	\underline{x} $\underline{x^3 - 6x - 4}$
2 correct evaluation	$2 \cdot 65 \le x \le 2 \cdot 75$, one < 0, one > 0.	M1	2 –8 2·1 –7·339 2·2 –6·552
()	c =) 2·7	A1	2·3 -5·633 2·4 -4·576
			2·5 –3·375 2·55 –2·718
			$\begin{array}{cccc} 2 \cdot 6 & -2 \cdot 024 \\ 2 \cdot 65 & -1 \cdot 290 \dots \\ 2 \cdot 7 & 0 \cdot 517 \\ \end{array}$
			2·7 –0·517 2·75 0·296 2·8 1·152
			2.9 2.989 3 5
		4	

MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Intermediate Tier	Mark	MARK SCHEME
13.(a)		Comments (Page 3)
9 2 6		
2 in correct position.	B1	
6 in correct position.	B1	FT 8 – 'their 2'. FT 47 , 'their 2', 'their 6'
9 in correct position.	B1	FT 17 – 'their 2' – 'their 6'.
(b) 6	B1	
(c) (i) $\frac{17}{45}$	B2	FT 'their total' for planning.
45		B1 for a correct numerator only in a fraction <1. B1 for a denominator of 45 in a fraction <1.
	6	א וטרום מעפווטווווומנטרט איז מוא מוומנווטוו א מעריים אוויים מעפווטוווים מעפויים אוויים אוויים אוויים מעריים אווי
14. Correct statement of Pythagoras' Theorem $PR^2 = 18 \cdot 4^2 - 12 \cdot 5^2$	M1	
$PR^{2} = 18 \cdot 4^{2} - 12 \cdot 5^{2}$ = 182 \cdot 31	A1	Also M1 for $18 \cdot 4^2 = PR^2 + 12 \cdot 5^2$. Or for sight of $\sqrt{182 \cdot 31}$
(<i>PR</i> =) 13·5(cm)	A1	
15. Sight of $2a + 3c = (\pounds)71.5(0)$ AND	3 B1	Accept their choice of variables for a and c.
3a + 4c = (£)101		Accept their choice of variables for a and c.
or equivalent Correct method to eliminate one variable.	M1	FT 'their equations' if of equivalent difficulty. Allow 1 error in one term, not one with equal coefficients.
First variable found $a = (\pounds)17$ or $c = (\pounds)12.5(0)$ Substitute to find 2 nd variable	A1 M1	FT 'their 1 st variable'.
Second variable found $c = (\pounds)12.5(0)$ or $a = (\pounds)17$	A1	
(4 adults and 2 children pay) £93	A1	FT their values if both M marks gained. ' \mathfrak{L} ' required.
	6	
16.(a) $(x-7)(x+3)$	B2 B1	B1 for $(x \dots 7)(x \dots 3)$. Strict FT from their brackets.
x = 7 AND $x = -3$		
(b) $\frac{2x - 14 + 2x + 5}{(8)} = \frac{4}{(8)}$ or equivalent.	B2	B1 for 1 error. FT until 2 nd error.
4x - 9 = 4 or equivalent. $x = \frac{13}{4}$ or $3\frac{1}{4}$ or equivalent.	B1 B1	Mark final answer.
	7	
17. $D\hat{A}C = 36(^{\circ})$	B1	May be seen on diagram.
Angles in the same segment are equal. $DC = 5.1 \times \tan 36$	E1 M1	Accept unambiguous statement of this fact. Accept $DC / 5.1 = tan 36$.
Angle subtended at the circumference by a semicircle is 90(°).	E1	Accept unambiguous statement of this fact.
DC = 3.7()(cm)	A1	
	5	

MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Higher Tier	Mark	MARK SCHEME Comments (Page 1)
1. Correct construction of 60°.	B2	With sight of accurate 'method arcs'. B1 for sight of 'method arcs' but not drawn accurately.
Correct construction of 90°.	B2	With sight of accurate 'method arcs'. B1 for sight of 'method arcs' but not drawn accurately.
Correct bisector of 90°.	B1	With sight of accurate 'method arcs'. FT 'their 90°' Penalise –1 if angles drawn at incorrect positions
	5	or if triangle not completed.
2. TRUE TRUE	B2	B1 for 3 correct.
FALSE FALSE	2	
3.		Correct evaluation regarded as enough to identify if negative or positive. If evaluations not seen accept 'too high' or 'too low'.
One correct evaluation $2 \le x \le 3$ 2 correct evaluations $2.65 \le x \le 2.85$,	B1 B1	$\frac{x}{2} \qquad \frac{x^3 - 6x - 4}{-8}$
one < 0 and one > 0. 2 correct evaluations $2.65 \le x \le 2.75$,	M1	2·1 –7·339 2·2 –6·552
one < 0 and one > 0.		2.3 -5.633
(x =) 2.7	A1	2·4 -4·576 2·5 -3·375
		2·6 -2·024 2·55 -2·718
		2.7 –0.517
		2·65 –1·290 2·8 1·152
		2·75 0·296 2·9 2·989
	4	3 5
4.(a) 9 2 6	4	
2 in correct position. 6 in correct position. 9 in correct position.	B1 B1 B1	FT 8 – 'their 2'. FT 17 – 'their 2' – 'their 6'.
(b) 6	B1	
(c) <u>17</u> 45	B2	FT 'their total' for planning. B1 for a correct numerator only in a fraction <1. B1 for a denominator of 45 in a fraction <1.
	6	

MATHEMATICS 2 nd SAMs 2017	Mark	MARK SCHEME
Unit 2 (Calculator allowed) Higher Tier		Comments (Page 2)
5. Correct statement of Pythagoras' Theorem	M1	
$PR^2 = 18 \cdot 4^2 - 12 \cdot 5^2$		Also M1 for $18 \cdot 4^2 = PR^2 + 12 \cdot 5^2$.
= 182.31	A1	Or for sight of $\sqrt{182.31}$
(<i>PR</i> =) 13·5(cm)	A1	
	3	
6. Sight of $2a + 3c = (£)71.5(0)$ AND	B1	Accept their choice of variables for a and c.
$3a + 4c = (\pounds)101$ or equivalent	2.	
Correct method to eliminate one variable.	M1	FT 'their equations' if of equivalent difficulty.
		Allow 1 error in one term, not one with equal coefficients.
First variable found $a = (\pounds)17$ or $c = (\pounds)12.5(0)$	A1	
Substitute to find 2 nd variable	M1	FT 'their 1 st variable'.
Second variable found $c = (\pounds)12.5(0)$ or $a = (\pounds)17$	A1	
(4 adults and 2 children pay) £93	A1	FT their values if both M marks gained. ' \mathfrak{L} ' required.
	6	
7.(a) $(x-7)(x+3)$	B2	B1 for (x 7)(x 3).
x = 7 AND $x = -3$	B1	Strict FT from their brackets.
(b) $2x - 14 + 2x + 5 = 4$ or equivalent.	B2	B1 for 1 error. FT until 2 nd error.
$\frac{(5)}{(8)} = \frac{1}{2} + $		
4x - 9 = 4 or equivalent.	B1	
x = 13 or 3 1 or equivalent.	B1	Mark final answer.
4 4	_	
	7	
8. $D\hat{A}C = 36(^{\circ})$	B1	May be seen on diagram.
Angles in the same segment are equal.	E1	Accept unambiguous statement of this fact.
$DC = 5.1 \times \tan 36$	M1	Accept $DC / 5 \cdot 1 = \tan 36$.
Angle subtended at the circumference by a	E1	Accept unambiguous statement of this fact.
semicircle is $90(^{\circ})$. DC = $3.7()(cm)$	A1	
DC = 5.7()(CIII)	AI	
	5	
9. (Least possible distance =) 399.75 (m)	B2	All four correct values.
(Greatest possible distance =) 400.25 (m)		B1 for any 2 correct values.
(Least possible time =) 73.5 (seconds)		
(Greatest possible time =) 74.5 (seconds)		
(Least possible av. Speed =) <u>399·75</u>	M1	One correct use of formula. FT their values.
$\frac{(\text{Least possible av. Speed })}{74.5}$	1111	
OR		
(Greatest possible av. Speed =) 400.25		
73.5		
= 5·36(5) AND 5·44(55) (m/s)	A2	2 distinct values.
Organisation and communication	001	
Accuracy of writing		
	W1	
	7	

MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Higher Tier	Mark	MARK SCHEME Comments (Page 3)
10. (a) $x = 0.49191$ and $100x = 49.19191$ with an attempt to subtract, OR equivalent (e.g. $1000x = -10x$)	M1	OR 48·7 / 99
<u>487</u> 990	A1	Mark final answer.
(b) False, AND a correct reason e.g. 'a needs to be a cube number for it to yield an integer' or a counter-example e.g. $6^{\frac{2}{3}} = \sqrt{36}$ and 36 is not a cube number.	B1	
(c) (i) $10\sqrt{2}$ (ii) $4\sqrt{5}$	B1 B1	
11. $40 \times$ the number of employees in any category.	5 M1	
Male Female Full-time 19 Part-time 3	A2	A1 for any 2 or 3 correct answers.
12. (a) Tangent drawn	3 S1	
Idea of increase in y / increase in x	M1	
Gradient from a reasonable tangent	A1	
m/s^2 OR ms^{-2} (b) Split into 6 areas and attempt to sum (Area =)	U1 M1	
¹ / ₂ ×10(0+2×10+2×30+2×32+2×33+2×39+40)	M1	Or equivalent. Award for up to 1 error in reading scale.
= 1640(m)	A1	CAO.
	7	
13. $(l^2 =) 10^2 + 5^2$ $l^2 = 125$ OR $(l=) \sqrt{125}$ $(l=) 11 \cdot 1(803)$ or $11 \cdot 2$ (Surface area =) $\pi \times 5 \times 11 \cdot 1(803) + 2\pi \times 5 \times 8 + \pi \times 5^2$ = 505 to 506 (cm ²)	M1 A1 A1 M2 A1	FT <i>'their I'</i> . M1 for any 2 of the 3 terms.
	6	
14. (a) $3(x + 1) - 5(2x - 1)$ as numerator AND (2x - 1)(x + 4) as denominator. OR multiply throughout by (2x - 1) and (x + 4) 3(x + 4) - 5(2x - 1) = 6(2x - 1)(x + 4)	M2 A1	Brackets required or implied later. M1 for either correct numerator or denominator, or multiply throughout with 1 error.
(b) $x = \frac{-49 \pm \sqrt{49^2 - 4 \times 12 \times (-41)}}{2 \times 12}$	A1 M1	Convincing i.e. need to see at least $12x^2 + 42x - 24$ Allow one error, in sign or substitution, but not in the formula.
$x = \frac{-49 \pm \sqrt{4369}}{24}$	A1	CAO.
x = 0.71 and $x = -4.80$	A1	CAO.
	7	

MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Higher Tier	Mark	MARK SCHEME Comments (Page 4)	
15. Use of $\frac{1}{2}$ absin <i>C</i> followed by cosine rule	S1		
$24.25 = \frac{1}{2} \times 12.7 \times AD \times \sin 132^{\circ}$ $AD = (2 \times 24.25)/(12.7 \times \sin 132^{\circ})$ AD = 5.13(883) or 5.14 (cm) $DB^{2} = 12.7^{2} + AD^{2} - 2 \times 12.7 \times AD \times \cos 132(^{\circ})$ $DB^{2} = 275(.036)$ DB = 16.5(842) or 16.6 (cm)	M1 M1 A1 A1 A1	$AE = DE / tan48(^{\circ}) = 3.439(cm)$ N $BE = AE + AB = 16.139(cm)$ n $Using Pythagoras, DE^2 + BE^2 =$ N 275.05 A	61 11 11 11 11 11 11 11 11 11 11 11 11 1
	7		

undatio	n Unit 1			AOs			
Qu.	Торіс	Max mark	A01	AO2	AO3	Common (Interm)	OCW
1	Number	6	6				
2	Line, circle	3	3				
3	Number puzzle	2			2		
4	Units	2	2				
5	Probability line	2	2				
6	Tally, graph	5	2	3			
7	Percentages, fractions, simplify	5	5				
8	Scales	7			7		\checkmark
9	Angles	5	5			5 (Q1)	
10	Number work	3	3			3 (Q2)	
11	Probability	4			4	4 (Q3)	
12	Rectangle problem	4			4	4 (Q4)	
13	Solving equations	5	5			5 (Q6)	
14	Central tendency	7	5		2	7 (Q7)	
15	Area of triangle and trapezium	5		5		5 (Q8)	
	Totals	65	38	8	19	33	

Intermediate Unit 1			AOs					
Qu.	Торіс	Max mark	A01	AO2	AO3	Common (Found)	Common (Higher)	OCW
1	Angles	5	5			5 (Q9)		
2	Number work	3	3			3 (Q10)		
3	Probability	4			4	4 (Q11)		
4	Rectangle problem	4			4	4 (Q12)		
5	Percentage and fraction	4		4				
6	Solving equations	5	5			5 (Q13)		
7	Central tendency	7	5		2	7 (Q14)		
8	Area of triangle and trapezium	7		7		5 (Q15)		\checkmark
9	Mutually exclusive and independent events	6	6				6 (Q1)	
10	Quadratic graph	7	6		1		7 (Q2)	
11	True or False	3			3		3 (Q3)	
12	Tessellation	6			6		8 (Q4)	
13	Equation of lines	3	3				3 (Q5)	
14	Standard form	4	4				4 (Q6)	
15	Tree diagram	6	2		4		6 (Q7)	
16	Solving, factorising and simplifying	6	6				6 (Q8)	
	Totals	80	45	11	24	33	43	

Higher Unit 1			AOs				
Qu.	Торіс	Max mark	A01	AO2	AO3	Common (Interm)	OCW
1	Mutually exclusive and independent events	6	6			6 (Q9)	
2	Quadratic graph	7	6		1	7 (Q10)	
3	True or False	3			3	3 (Q11)	
4	Tessellation	8			8	8 (Q12)	\checkmark
5	Equation of lines	3	3			3 (Q13)	
6	Standard form	4	4			4 (Q14)	
7	Tree diagram	6	2		4	6 (Q15)	
8	Solving, factorising and simplifying	6	6			6 (Q16)	
9	Region satisfied by inequalities	3	3				
10	Perimeter of a sector	4			4		
11	Similar volumes - ornaments	4		4			
12	Rational numbers	2	2				
13	Histogram	7	3	4			
14	Graphical solution of a quadratic	3		3			
15	Simplify algebraic fraction	5	5				
16	Probability	6	2		4		
17	Transformation of graphs	3	3				
	Totals	80	45	11	24	43	

oundatio	n Unit 2			AOs		7		
Qu.	Торіс	Max mark	A01	AO2	AO3	Common (Found)	OCW	
1	Bill	4	4					
2	Triangle construction	3	3					
3	Estimating area	2	2					
4	Chance; mode	3	3					
5	Number tower; coins; ready meals	8		4	4		\checkmark	00
6	Equations	2	2					
7	Location	2	2					
8	True/false; symmetry	4		2	2			
9	Finding sequences	4			4			
10	Simplifying, substitution and sequence	6	6			6 (Q2)		
11	Probability	3	2		1	3 (Q3)		
12	Percentages	2	2			2 (Q4a)		
13	Shape problem	4		4		4 (Q5)		
14	Mean from discrete frequency table	5	5			4 (Q6)	\checkmark	W
15	Coordinates problem	6			6	6 (Q7)		
16	Average speed	3	3			3 (Q8)		7
17	Transformations	4	4			4 (Q9)]
	Totals	65	38	10	17	32		

Intermediate Unit 2			AOs					
Qu.	Торіс	Max mark	A01	AO2	AO3	Common (Found)	Common (Higher)	ocw
1	Factor, cube ,multiple and prime	4	4					
2	Simplifying, substitution and sequence	6	6			6 (Q10)		
3	Probability	3	2		1	3 (Q11)		
4	Percentages	4	4			2 (Q12)		
5	Shape problem	6		6		4 (Q13)		\checkmark
6	Mean from discrete frequency table	4	4			4 (Q14)		
7	Coordinates problem	6			6	6 (Q15)		
8	Average speed	3	3			3 (Q16)		
9	Transformations	6	5		1	4 (Q17)		
10	Construction	5	5				5 (Q1)	
11	Congruency (True / False)	2		2			2 (Q2)	
12	Trial and improvement	4	4				4 (Q3)	
13	Venn diagram	6	1	2	3		6 (Q4)	
14	Pythagoras	3	3				3 (Q5)	
15	Forming and solving simultaneous equations	6			6		6 (Q6)	
16	Factorising and solving	7	7				7 (Q7)	
17	Circle theorem and trig.	5			5		5 (Q8)	
	Totals	80	48	10	22	32	38	

High	Higher Unit 2		AOs				
Qu.	Торіс	Max mark	A01	AO2	AO3	Common (Interm)	ocw
1	Construction	5	5			5 (Q10)	
2	Congruency (True / False)	2		2		2 (Q11)	
3	Trial and improvement	4	4			4 (Q12)	
4	Venn diagram	6	1	2	3	6 (Q13)	
5	Pythagoras	3	3			3 (Q14)	
6	Forming and solving simultaneous equations	6			6	6 (Q15)	
7	Factorising and solving	7	7			7 (Q16)	
8	Circle theorem and trig.	5			5	5 (Q17)	
9	Greatest possible speed	7	7				\checkmark
10	Recurring decimal to fraction, surds	5	4		1		
11	Stratified sample	3	3				
12	Train velocity-time graph	7	7				
13	Surface area cone and cylinder	6		6			
14	Fractional quadratic equation	7	7				
15	Sine Cosine rule	7			7		
	Totals	80	48	10	22	38	